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We show that the aging phenomena found in spin glasses and other complex systems can be repro-

duced by a hierarchical model of relaxation.
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Aging effects were first observed in spin-glass sys-
tems'~’ by the Uppsala group, and have quite recently
been measured in high-T, superconductors® and charge-
density-wave systems® as well. They are one important
experimental indication of a relaxation process proceed-
ing in a complex phase space, with many local energy
minima and a broad spectrum of relaxation times. This
paper discusses a master-equation approach to the prob-
lem for temperatures below the spin-glass transition tem-
perature. In this range the model is capable of reproduc-
ing the most important features of the experiments with
only two fitting parameters. For the zero-field-cooled
(ZFC) experiments the features are a kink in the magne-
tization plotted as a function of logarithmic time at 1 =1,
and a corresponding maximum of its derivative as shown
in the insets in Figs. 2 and 3. The underlying model as-
sumption is that the stochastic dynamics of any system
with a complex state space can—for flow tempera-
tures—be coarse grained into a random walk on a
tree.'%!> The same kind of approach was previously ap-
plied to the calculation of the ac linear susceptibility of
spin glasses,' and the theoretical arguments supporting
this view are described in a recent paper by the au-
thors. !°

Other recent theoretical approaches to the same prob-
lem are due to Koper and Hilhorst'® and to Fisher and
Huse.!® Our work is different from those in several
respects. Firstly, it is a hierarchical rather than a paral-
lel model of relaxation. Secondly, the scaling properties
of the model are not put in the theory of an Ansatz, but
are rather derived from a simple master equation with
exponential waiting times. Thirdly, it is a dynamical
model!” as the nonequilibrium properties for spin glasses
and other systems® are only weakly related to equilibri-
um properties on the time scales which are exponentially
accessible at very low temperatures.

In our model the low-energy states of the system are
organized in a tree structure as is shown in Fig. 1. The
nodes of the tree are obtained by lumping together sets
of states of the spin-glass system. These states are close
to each other in the sense that the system can move from
one to the other with a small energy change. Each local
minimum node in the tree represents thus a phase-space

pocket in which the system can be trapped. To move
from one local minimum to the other, the system has to
cross energy barriers by performing short-range hops be-
tween neighbor nodes. Possible paths are given by the
connectivity of the tree. This differs from ultrametric
models with long-range hops between the states at the
base line of the tree,'®!® except at temperatures close to
zero. The clustering of the states in our model as well as
in Ref. 18 is by construction only a matter of time scales.
In our model there is no claim of ultrametricity with
respect to the spin overlap function which is so far left
unspecified. For a thorough discussion of the construc-
tion and the transition to a regular tree see Ref. 10.
Within the linear-response approach used below we
need only to specify the disorder average and the disor-
der correlation function of the coarse-grained magnetiza-
tion of the different nodes. Since we only aim at a low-
temperature theory, the physical properties of the ener-
getically higher-lying nodes will only be of exponentially
small importance, and for any disorder realization we set
their magnetization to zero. The magnetization of the
bottom nodes will be of the order of the square root of
the size of the system. Disorder averaging these quanti-
ties in addition, we set them to zero. Thus the only
quantity left is the disorder correlation function between
two bottom nodes which is assumed to decay linearly

FIG. 1. The coarse-grained structure of the phase space of a
spin glass. The nodes of the tree represent a large number of
states of the system which can be reached from one another by
spin flips with a small limited amount of energy.
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with the distance along the base line of the tree. This as-
sumption is quite arbitrary; however, it has already been
used successfully in Ref. 14. Its physical implication is
that equal changes in the disorder correlation function
become harder and harder to achieve as the relaxation
progresses. This effect requires that the distance defined
by the disorder correlation function be different from the
ultrametric distance defined by the relaxation times.

Let the time at which the system was quenched be
—t,. During the time ¢, the system relaxes unper-
turbed, and at time zero a small field is turned on. The
initial condition of the second part of the relaxation thus
depends on ¢,,. In order to get an idea of how it can pro-
duce an aging effect, we can think of the probability dis-
tribution after time ¢, as being uniform on the bottom
nodes of some subtree (of characteristic size proportional
to logarithm of the time) and zero otherwise. Then for
times ¢ less than #,, the diffusion process is acting on a
uniform distribution with zero net effect. For ¢ of the or-
der of ¢, the system begins to diffuse appreciably outside
the initial subtree and the relaxation effect becomes no-
ticeable. For ¢ much larger than ¢,, the effect of the ini-
tial distribution wanes away, and one has the usual alge-
braic relaxation. This qualitative picture of the relaxa-
tion process is supported by the following quantitative
analysis.

According to linear-response theory the magnetization
M (¢) at time ¢ due to a small field H(¢) is given by

L [l _H@RGOar, M

B
where T is the temperature and kg the Boltzmann con-
stant. In the usual equilibrium situation?® one then re-
lates the memory function R to the autocorrelation func-
tion of the stochastic dynamics by the well-known fluc-
tuation dissipation theorem,

M(t)=k

R(.t") =£—,<M(t)M(z')>. )

Our situation is different since we are dealing with a
nonequilibrium situation. This gives rise to two addition-
al terms in Eq. (2). The first term is a phase-space aver-
age of the magnetization. As the disorder average of the
magnetization is zero for all nodes this term vanishes.
The second term can be considered as a “response to the
initial condition.” It is a phase-space average of a func-
tion which vanishes identically in equilibrium due to de-
tailed balance. A thorough discussion which will be pub-
lished separately shows that within the Kramers approxi-
mation '® used below this term is of no importance.

In the ZFC experiment the system is prepared by
quenching without field at time —¢, into a certain state,
which we take in our model to be state zero. At time O a
small constant field H is switched on and we find from
Eq. (1)

kT
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The systems thermal relaxation is described by a
Metropolis-like random walk on the tree of Fig. 1. Let
the branching ratio of the tree be z. The upward transi-
tion rate from one node to its parent node is taken as
xe %7 while the downward rate is set equal to 1. The
parameter k is a measure of the size of the phase-space
region which every node represents and A is the energy
difference between a node and its parent. The linear in-
crease of the free energy with the level height is an a
priori arbitrary model choice. However, it guarantees
the applicability of the Kramers approximation'® used
below, and is a posteriori supported by our results. Oth-
er choices of the energy dependence might nonetheless
be worth exploring.

Let P(/,t|i) be the probability that the system is at
the bottom node / at time ¢, given that it was at the bot-
tom node i/ at time zero. Here the bottom nodes are
numbered in ascending order starting with zero from left
to right.

Then the random-walk autocorrelation function is
given by

=0i=0

(M(t)M(0)>=/Z”: E [1 —%ll—i | ]
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where ¢ is the time spent under the influence of the field,
and n is the total number of low-energy states. Note
that (M ()M (0)) is not invariant under time transla-
tions. As (M ()M ())=1 due to P(/,0|i)=6;; and due
to Eq. (3), we then have

M__2
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We now use the Kramers approximation'® as a step

towards a closed-form analytical formula for the model
ZFC magnetization. The physical meaning of the ap-
proximation is that in any one subtree the system relaxes
to a quasiequilibrium situation on a time scale short
compared to the time needed for a substantial loss of
probability out of the subtree. That means that the
probability distribution is the same as in equilibrium, but
modulated by an exponentially decaying time-dependent
envelope. This envelope function, which is the probabili-
ty of being in a subtree of height m at time ¢, is then

0"(t) =exp(—Amt) ,

where A, is the rate of escape from the mith subtree. A,
is assumed proportional to the equilibrium probability
of being at the “top” of the subtree: A, ~A™ with
A=(x/z)e "¥T. We assume A < 1, which means a re-
striction on the possible values of the temperature if
k> z. The mathematical basis of the Kramers approxi-
mation and its limitations are detailed in Ref. 10.

The diffusion propagator P(/,t | i) depends only on the
ultrametric distance between its spatial arguments, i.e.,
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the height k of the smallest subtree connecting / and i, and within the Kramers approximation it can be written as

Pk 1) = Zk[Q”’(t) —-0m" 'z 7",

With this notation the leading terms for the magnetization from Eq. (4) are
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This formula can be evaluated numerically with limited computational effort for reasonably large trees. However, it is
also convenient to have a closed-form, albeit (more) approximate, expression for the time-dependent magnetization.
The needed additional mathematical approximation retains the only important feature of the function 90" (¢), i.e., its

decay on a certain time scale A, '.

1—Amt, 0=t=<Ar,",

0, otherwise.

o™(t) ={

We approximate Q" (¢) by

With y = —Inz/InA and taking in addition the limit N — co we find from Eq. (5), as leading terms in 7 and ¢,

Y
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FIG. 2. The ZFC magnetization as a function of the loga-
rithm of time for four different waiting times tzw. Curve A4,
t. =102 curve B, 1., =103 curve C, tw =104 curve D, t. =10°.
Inset: Experimental data over the same time range, taken
from Ref. 3.
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FIG. 3. The logarithmic derivative S(¢,z,) =9M (¢,1,,)/d1n¢
as a function of the logarithm of time for four different waiting
times fw. Curve A4, t,=10% curve B, t,=10% curve C,
t. =10% curve D, 1, =10°. Inset: Corresponding experimental
data taken from Ref. 3. Note that both sets of curves have
maxima roughly at 1 =¢,,.
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We have checked that the numerically evaluated re-
sults and the above analytical formula agree very well.

The following results for the time dependence of the
ZFC magnetization M (¢,1,) and its derivative
S(t,t,)=0M(¢,t,)/0Int were computed according to
Eq. (5) after a rescaling of time and numerical
differentiation for various parameter values of «x, z, and
T and for different tree sizes V. The plots in Figs. 2 and
3 were all obtained for z=1.15, x =2, and T=0.5.

Figure 2 displays the values of the model ZFC magne-
tization as a function of logarithmic time, for different
values of the waiting time, while Fig. 3 shows the corre-
sponding values of the logarithmic derivatives. The in-
sets show the corresponding experimental data from
Ref. 3.

As seen from the drawing, as well as from the analyti-
cal formula Eq. (6), the numerical result M (¢,t,) in-
creases for ¢t >t, as a power law of ¢ with a small ex-
ponent and ‘“something happens” on a logarithmic scale
for t =1t,. This made explicit by looking at the logarith-
mic derivative S(z,t,,) of M(z,t,,) in Fig. 3.

By comparing with the experimental results of
Svedlindh et al.,? we find that for temperatures /ow rela-
tive to the energy spacing of the tree, the characteristic
features of the experiments, i.e., the slow algebraic
dependence of the ZFC magnetization on both ¢ and ¢,
and the maximum in its logarithmic-time derivative at
t=t,, are well reproduced by the model, provided that
the model parameters z and k are close to unity.
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