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Self-Avoiding Walks on Diluted Networks
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It is shown that, contrary to recent suggestions, the exponent v characterizing self-avoiding walks in a
diluted lattice at the percolation threshold is determined by a fixed point diA'erent from the pure-lattice
one. The full phase diagram of this system is obtained by a real-space renormalization-group treatment
and five nontrivial fixed points are identified. A field-theoretical treatment yields v= —, +e/42, with
e =6 —d. All these results are supported by exact enumeration analysis.
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The problem of self-avoiding walks (SAW's) on dilut-
ed lattices, simulating linear polymers in quenched ran-
dom disorder, ' has been the subject of extensive research
for more than a decade. " However, the main out-
standing question in this topic is still unresolved; namely,
does the disorder at the percolation threshold' induce a
change in the asymptotic statistics of long SAW's? In
this paper we answer this question affirmatively using
several analytic and numerical approaches.

The statistics of SAW's are conveniently discussed in
terms of the generating function G(i,j;K), defined by
G(i j;K)—=pjv Ctv (i,j )K, where Ctv(i,j ) is the number
of ¹step SAW's between sites i and j and K is the fuga-
city of each step. It is easy to show ' that in the pres-
ence of dilution, lG(i,j;K)]~, where [ ]~ denotes average
over configurations in which each bond is occupied with
probability p, is trivially given by G(i,j;pK), i.e., the
pure-system function with a renormalized fugacity. This
result led to the claims (for a review see Ref. 2) that
disorder has only trivial eff'ects. However, it is not clear
how disorder aff'ects the average end-to-end distance of
¹tep SAW's, (RJv), defined by

(Rtv) = g C&(i,j )r;~ P Ctv (i,j )
J J -P

where r;J is the geometrical distance between sites i and j
and the prime indicates that the average is over all
configurations which support at least one ¹ tep SAW
starting from site i. Equation (1) defines the SAW ex-
ponent v. (Rg) is the quantity that has been studied by
numerical simulations. ' ' " Early studies ' concluded
that for p & p„where p, is the percolation threshold, '

v(p) = v(p =1), the pure-system value, which is equal to
4 for d=2 dimensions and =0.588 for d=3. At p=p,

those works indicated a larger exponent, v(p =p, ) =0.77
in 2D and =0.65 in 3D. Recently, Lee and Nakanishi'
pointed out an error in Kremer's analysis, which would
have changed the original estimate to v(p -p, )=0.62 in

3D, much closer to the pure-system value. Moreover,
their extensive numerical simulation ' ' ' suggested
v(p, ) = v(p =1), at least within the errors of their calcu-
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FIG. 1. Fixed points and RG flows for SAW's on a dilute

lattice. The flows are defined by the recursion relations of Eq.
(8) for p and for in%. The interpretation of the various fixed
points is discussed in the text.

lation.
In this Letter we use the renormalization group (RG)

(both real space and momentum space) in conjunction
with exact enumeration data to show that the exponent
v(p, ) is determined by a fixed point diff'erent from the
pure-system one, leading to the conclusion that
v(p, )a v(p =1). For p )p, our formulation gives
v(p, ) =v(p =1) as found previously. In the following
we denote v(p =p, ) by v. A detailed presentation of the
results summarized below will be published separately.

In Fig. 1 we show the phase diagram obtained by a
real-space RG calculation described below. Five non-
trivial fixed points are identified. Points A (at p =1), 8
(at p =p, ), and C (at p =0) describe SAW's, respective-
ly, on a pure lattice, at the percolation threshold, and on
lattice animals, ' i.e., clusters larger than the percolation
correlation length, g~. Interestingly, two other fixed
points are found at p =p„Dand E, corresponding to the
maximal and minimal walks at the percolation threshold,
respectively.

We construct a field theory describing SAW's at the
percolation threshold. Using an e expansion, with
|..=6 —d, we find a fixed point at a critical value of K,
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which is unstable with respect to both p and K, in agree-
ment with Fig. 1. This treatment gives v= —,

' +e/42. As
discussed below, this value obeys the obvious bound
vm;„~v~ vm,„,where v;„and vm, „describe the scaling
of the minimal and maximal SAW's, respectively, at the
percolation threshold.

Since (Rg) of Eq. (1) is not a convenient one to study
within the framework of the field theory, we instead
study N as a function of R, viz. ,

ing in powers of 1n(K/Ko), one can write

F(p, K) =F(p, Ko ) + 1n (K/ Kp )g& [N (Kp )]&

+O(ln'(K/Ko) ), (6)

N(K0):g [N i (Ko) ]p lv 1 ]p/gp

where g~, the percolation susceptibility, is gp—=Pi [v;il~
and

[N,, (K)],—= v;i PzNK C~ (i,j )

glvK C~(i,I)

[v;, lnG (i,j;K)]p/[v;, ]~,
a

t) lnK
(2)

is essentially N;z for r;i —g~. Here Ko is chosen such
that the first term on the right-hand side of Eq. (6) will

be given asymptotically by Cog&, where Co is at most of
order unity. In view of Eq. (3) we have to order
ln(K/K, ),

where v;j is unity if i and j are connected in a given
configuration and zero otherwise. [NI(K)]z is the num-
ber of steps averaged over all SAW's between sites i and

j restricted to be in the same cluster. As we shall see
below, there is a critical value of K, denoted Ko, such
that

[N() (Kp) ]p r(j:r&j (3)

with v~ the percolation correlation exponent. Hence,
calculation of p yields the required information on v.

The main complexity of this model stems from the fact
that, unlike the randomly diluted Ising Model, ' the di-
lute x-y model, ' or the random resistor network, ' ' the
first average in Eq. (2) cannot be decoupled. The decou-
pling in the cited models can be performed since in these
models there exists a multicritical fixed point at p =p„
where the correlation functions

G " (p, T)=—g[(Si(r;)Si(ri))T]~.
J

(4)

F(p, K) —=g[v1 lnG(i,j;K)]z .
J

(5)

(A similar suggestion was made by Derrida. ) Expand-

become critical simultaneously for all k. Here Sl(r;) is
the first component of the spin at site i and ( )T denotes a
temperature average with respect to the relevant Hamil-
tonian. Although the statistics of SAW's can be ob-
tained ' from the n 0 limit of the n-component
Heisenberg-like Hamiltonian, the behavior of this model
in the high-temperature regime, when diluted, is unique.
Using the 1/o expansion' to calculate the critical fuga-
city, Kz(p), of the above correlation functions (here K
plays the role of temperature), we find that for this mod-
el there is no such multicritical point in the p-K plane for
all G . Thus, as pointed out by Derrida, as either K
or p changes, a series of transitions occur whenever a
phase boundary for each G is crossed. This is due to
the exponential dependence of C&(i,j) on r;i. Accord-
ingly, we are led by Eq. (2) to study the correlation
function

p' =2p +2p —5p + 2p

p'ln(K') =41n(K)p +61n(K)p

+ [ln(2) —14 ln(K) +4 ln(K+ 1)]p

+ [61n(K) —31n(K+ 1)]p

(8a)

These recursion relations lead to the phase diagram
displayed in Fig. 1. Points A (p* =1; K* =0.366), 8
(p* = —, , K* =0.788), and C (p =0, K =~) corre-
spond to SAW's on the pure lattice, SAW's at the per-
colation threshold, and SAW's on lattice animals, re-
spectively. At the percolation threshold one has

P=ln(kx)/ln(A~), where Xx. =8K/BK and Xz =tip'/Bp
at the fixed point. We find X~ = —", and 16K~ =(34
+39K )/(1+K ). For point 8, P —1.682, leading to
v=v~/p —0.793 (using' v~ = —,

' ). It should be noted
that the corresponding recursion relation for G ' (=K),
p'K'=2p K +2p K „canbe totally decoupled, in terms
of the variable pK, from the one for p (8a). This means
that p, plays no particular role in the scaling of
[G(i,j;K)l~ (=G(i,j;pK)), as discussed above and in
Ref. 7.

An interesting (and desirable) consequence of the

F(p, K) =Co(p, —p) "'[1+4ln(K/Ko)(p, —p) ~],
(7)

with yz the percolation susceptibility exponent and A a
constant. Thus p may be obtained as the crossover ex-
ponent associated with "turning on" the variable
ln(K/Ko) near the fixed point (p =p„K=K0),in the
same way as the crossover exponent for the dilute Ising
model is obtained by turning on the variable
exp( —J/ k T) near the fixed point (p =p„T=0). The
physical meaning of Ko ( & 1) is that it is determined
such that it will exactly balance the exponential growth
of C&(i,j) in typical configurations.

To illustrate the above idea, we have performed a cu-
mulant real-space RG ' (CRSRG) calculation on a
Wheatstone bridge for the two variables p and lnK
(which is equal to lnG for the renormalized bond), and
obtained the recursion relations
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CRSRG is the appearance of two other fixed points at
the percolation threshold, corresponding to the minimal
and maximal SAW's. Using the values K* =0 and
K* =~, we find p ;„=1.55 and p ,„=1.835 in exact
agreement with the direct evaluation of these exponents
on the same structure. ' The meaning of these fixed
points is easy to understand. For large enough K
(K & Kp), G(i,j;K) is dominated by the contribution of
the longest SAW, of N,„(i,j) (—r '* ') steps. Hence
[lnG(i, j;K)]~—r "'* '. This argument agrees with the
results of Ref. 4, which obtained, for K =1 & Kp, &=2.09
(compared to P,„=2.0+0.2 from series analysis P),

though we believe they misinterpreted their results.
Similar arguments involving p;„may be used for
K & Ko, where the minimal walk will dominate the sum.
It should be noted that our approach is different from
previous RSRG calculations. Those concerned the re-
normalization of G ', which has nothing to do with
(Rjv).

The structure of the phase diagram was confirmed by
exact enumeration studies. Series in general spatial di-

G +'(p, K) =g—[v;,G(i,j,K) "]p
J

=g~+kF(p, K)+O(k ) . (9)

To treat dilution we start from the m-replicated version
of the n-component Heisenberg-like model Hamiltonian
for which

mension for F(p, K) were constructed to eleventh order
in p and analyzed by the nonhomogeneous differential
Pade approximants ' for their exponents. These ex-
ponents exhibit a crossover from y~+p;„for small K to
y~+p, „atlarge K in all dimensions, as expected from
Eq. (6), with p;„and p,„agreeing with previous esti-
mates. Similar crossover phenomena occur for the ex-
ponents obtained by the analysis of the series generated
for [N(K)]~. Other results from the series analysis will

be mentioned below.
Having established the above phase diagram, we now

construct a field theory to describe the scaling of [InG]~
near the fixed point B. To do this we study the recursion
relations for G for k~ 0, because

exp( PH " ) =—exp —~zK+e;J g g S~(r;)S~(r~. )
tij a=]P=]

(10)

where e;~ = 1 if the nearest-neighbor bond i -j is occupied and is zero otherwise. Introducing fields
Wk(al, a2, . . . , ak', pl (P2 ( (pk, r) conjugate to +~"=15,JJ(r) by a Stratonovich transformation and passing to the
continuum limit, we obtain the effective Hamiltonian in terms of the + fields up to order + as

—PH, ff 2 t d"qg[rk +q ]+k(q):%'k( —q)+ —,
' w ~d r + (r),

k

where %'k (q) is the Fourier transform of 0 k(r) and %'k (q): % k( —q) denotes an inner product,

%'k(q):+k( —q) =
- .&k Pl &P2 & &Pk

I +(a|, . . . , ak Pl ~ ~ ~ Pk q) I'. (12)

The meaning of %' (r) is similar to that for the dilute Is-
ing model, namely the only cubic terms allowed are those
for which all pairs (a,P) of replica labels appear either
twice or not at all. However, there is a sum from 1 to n

over each a index, which means that in a diagrammatic
perturbation theory, if a replica label (a,P) only appears
on internal propagators, the sum over the associated a
will be zero and thus such a diagram need not be kept.
The recursion relations are obtained following the
scheme of Ref. 22, in close parallel with the dilute Ising
model' and the dilute xy model. '" We find

dPk 2E 6 kT=(2 —q)rk+ GkGp ——g G,Gk
7 7 s OK s!s!

(13)

where Gk is the propagator associated with (+k (q)
x%'k( —q)) and g= —e/21. To get Eq. (13) we added
and subtracted the terms with s =0 and s =k which are
not allowed (if there are no replicas, there is no propaga-
tor) and we set w equal to its fixed point value, w =2e/7.
Also in Eq. (13) the sum over s was extended from 0 to

~ since the summand vanishes for s & k, the original
upper limit of the sum. As usual we set
Gk =(1+rk) ' and we only need to keep track of terms
up to linear order in the small parameter rk. For k =0,
Eq. (13) reduces to that for percolation and gives
I/v~ =2 —5e/21. We now set rk =rp+ku, for small k,
and obtain the recursion relation for u by taking the
k 0 limit of Eq. (13). We obtain

du 2 —
ri

——u+ —g —( —1)'G, G —,, (14)
E' E' 1

dl 7 7q ]s
which is of the form d(u —u, )/dl =(u —u, )/v, where u„
which should be identified with ln(Kp), has fluctuation
corrections at order e and v= —,

' +e/42. This value lies
midway between the bounds for the exponents for the
shortest and longest walks, which are given byv;„=—,

' +7m/168 and v,„=—,
' +e/168. Moreover, in-

dependently of our result, the assumption that
v(p=p, ) = v(p =1) violates this bound in first order in

e, since v(p =1)= —,
' for d & 4.
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Furthermore, we have used exact enumeration to
study [N (K) ]~ from which we obtain the following
values of v: 0.76~0.08, 0.67~0.04, 0.63~0.02, and
0.54~0.02 for d=2, 3, 4, and 5, respectively, which ex-
clude the pure-lattice values for d & 2. The 2D value
agrees well with the CRSRG result, P =0.793. The
series estimates are well controlled by the fact that they
are in the crossover regime between the known values
«vmin and vmax

In view of Eqs. (6) and (7) and the above discussion,
one obtains the scaling representation, valid near the
critical point at (p =p„K=Ko):

In(K/Ko)
F(p, K) =Co(p, —p) "f

(p, —p)~

Consequently, all cumulants of [N(K) lz (e.g. ,

[N —N ]p) scale with a constant gap exponent. This
was verified by our series analysis, substantiating further
our detailed picture of this critical point. Interestingly, a
constant gap was found in Ref. 4 for the positive mo-
ments for K=1, well above the critical point.

To conclude, we have shown that, unlike recent sug-
gestions, SAW's at the percolation threshold are de-
scribed by an exponent diAerent from the pure-system
value. We have constructed real-space and momentum-
space renormalization-group treatments which elucidate
for the erst time the nature of the scaling of SAW's on
percolating clusters. Accordingly, we feel that we have
provided a satisfactory resolution of this long-standing
problem.
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