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Interaction of Localized Solutions for Subcritical Bifurcations
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We discuss the interaction of localized solutions as they arise for the subcritical bifurcation to travel-

ing waves. We find that for a large parameter range the localized solutions can interact so that they
emerge after the collision with a size and shape unchanged compared to that well before the collision.
The mechanism for this behavior, which is unusual for a strongly dissipative system, is qualitatively
diferent from that associated with solitons for completely integrable systems. In accord with this we

find that for other parameter values counterpropagating localized solutions can annihilate.
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One of the big breakthroughs in nonlinear physics in

the last 25 years was the discovery of solitons by Zabu-

sky and Kruska. ' They found that for the Korteweg-de
Vries equation, as it arises, for example, for shallow-

water waves, localized solutions could collide and emerge
after the collision unchanged in speed, size, and shape,
when compared to the time well before the collision.
Since then the field of solitons has seen tremendous de-

velopment and it has become clear that completely in-

tegrable equations such as the Korteweg-de Vries equa-
tion, the sine-Gordon equation, and the nonlinear Schro-
dinger equation can be characterized by an infinite num-

ber of conservation laws. Aside from the particlelike
one-soliton solutions, which have been known for over

100 years, these equations have also been found to have

multisoliton solutions and their collision behavior has

also been studied (see, e.g. , Ref. 5 for a detailed review).

All the equations which are known to be exactly in-

tegrable are of the Hamiltonian or purely dispersive

type. That is, dissipation is discarded entirely or at best

taken into account perturbatively in the limit of very

weak dissipation. On the other hand, for many macro-

scopic phenomena in physics dissipation is not just a

small perturbation, but plays an important role in the

determination of the dynamic behavior. Therefore it

seems natural to ask whether it is possible to have a

strongly dissipative system whose solutions share at least

some of the properties with those prototype systems

known to be exactly integrable; whether it is, for exam-

ple, possible to have particlelike solutions of an equation

of evolution, which collide and interpenetrate, but which

are unchanged in speed, size, and shape after the col-

lision.

The purpose of this Letter is to give an example for
such a behavior for a prototype equation, which is both
strongly dissipative and dispersive. The equation of in-
terest arises as the envelope equation for a weakly sub-
critical bifurcation to counterpropagating waves. ' For
such a bifurcation the amplitude does not grow continu-
ously from zero as a function of a control parameter, but
has a small jump and shows hysteretic behavior as this
control parameter is reduced from a value above thresh-
old. The envelope equation is derived using the vicinity
to onset of the instability and a sufficiently slow variation
in space and time for the wave packet (cf. Refs. 11 and
12 for reviews on envelope equations). For such an
equation, which arises naturally for a number of physical
systems including the onset of oscillatory convection in

binary Auid mixtures, ' we find for a large range of pa-
rameter values for the nonlinear interaction between
counterpropagating waves, localized solutions which
emerge unchanged after collision, but which are due to a
mechanism quite diA'erent from that in solitonic systems.
In addition, this equation also shows interesting interac-
tion behavior, including complete interpenetration as
well as partial annihilation, for collisions between local-
ized solutions corresponding to a single-particle and to a
"two-particle" state. The limitations of the approach
presented are critically examined and the need for more
analytic work is emphasized.

To derive the envelope equation for weakly subcritical
bifurcations to traveling waves one keeps all the terms
which are needed to lowest consistent order in the dis-
tance from the onset of the instability. For waves travel-
ing in one direction this equation reads for slow spatial

!
modulations in one spatial direction, '

|1 A+vol A =ZA+(7'. +is» ~
—(P.+tP ) IA I'A —(b. +i%) IA I"A —(&.+i& ) IA I'A. —(p, +tp;)A'A.'. (1)

Th«e» part of the cubic term, p„, is negative for an inverted bifurcation, whereas the real part of the quintic term

&, & 0, and thus provides the saturation for the amplitude A and y;, p; and 8; are associated with spatial and nonlinear

dispersion, respectively. v is the linear group velocity of the waves. As has been discussed first in Refs. 6 and 7 the non-

linear g~~dient terms (—k,p) arise to the same order in the distance from the onset of the instability and must there-

fo«be kept. It can be easily checked that three of the parameters in Eq. (1) can be scaled out by rescaling length,

time, and amplitude. In addition, one can go into the moving frame if an unbounded or periodic motion in only one
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direction is studied. This leaves, however, still eight pa-
rameters. This situation must be contrasted with the one
obtained for the prototype completely integrable systems
[sine-Gordon, Korteweg-de Vries (Kd V), nonlinear
Schrodingerj, which typically do not have any free pa-
rameters.

It has been shown'3 that Eq. (1) allows for spatially
localized, particlelike solutions over a large range of pa-
rameter values; and it has been argued' that the stabili-
ty of these localized structures is essentially due to a
nonvariational eA'ect, namely a feedback mechanism be-
tween frequency and amplitude of the resulting solution.

In Fig. 1(a) we show two such particlelike solutions,
neglecting the nonlinear gradient terms in Eq. (1).
These localized solutions change their shape in the pres-
ence of these terms. As will be discussed in detail else-
where, ' these nonlinear gradient terms can lead, in ad-
dition, to a slowing down of the localized solutions, an
observation which could be relevant in connection with
experimental observations in binary Auid convection. '

The numerical technique is described in Ref. 14.
Starting from many diAerent initial conditions, includ-

ing Gaussians with variable amplitude and width, typi-
cally either one or several, well separated, one-particle
states are obtained, which all have the same shape
(width and height). For a finite subclass of initial condi-
tions, however, it is possible to obtain in the long-time
limit a state which we will call a "two-particle" state. A
typical example is plotted in Fig. 3(a) on the left. This
object is stable against small perturbations. It is also
formed if two one-particle states are brought sufticiently
close together. Its width as well as the depth and the
width of the dip are fixed and always the same for a
given set of parameters in Eq. (1). If one prepares ini-
tially two one-particle states closer together than this
characteristic distance between the two peaks of the
two-particle state, they move apart, the dip forms, and a
two-particle state results. If one prepares the two one-
particle states too closely together, however, the object
collapses and forms a single one-particle state. The
two-particle state, whose behavior under collisions with
one-particle states will be discussed further below, thus
constitutes a fairly robust object, and also exists over a
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FIG. l. Complete interpenetration of two one-particle solu-

tions ((,=2.5): (a) initial approach, (b) interaction, and (c)
final state after interaction.

large range of parameters in Eq. (1), which seems to be
a subrange of the existence of one-particle states. We
would like to note, however, that it takes, from a given
initial condition, a much longer period of time (about 2
orders of magnitude) to form a two-particle state than to
form a one-particle state. If the initial Gaussian is not
large and wide enough, it collapses to zero, and no one-
or two-particle state is formed. The same applies to pa-
rameter values outside the range for the existence of one-
and two-particle states for all initial conditions as long as
the state with zero amplitude is locally stable.

To study collision between counterpropagating one-
and two-particle states, we start from the coupled en-
velope equations for counterpropagating waves, which
read, generalizing Eq. (1) in the usual way,

—(u. +~u )»- —(x, +~~;) I
& I &.—(u, +@~;)&*».—(g, +fg;)w».* (2)

and a corresponding equation for the left-traveling wave. In writing down these equations, we have discarded quintic,
spatially homogeneous cross-coupling terms (like those —

I B I I A I A, I
8 I A) in Eq. (2).

To study collisions between localized states, all one needs to do is to start, for example, with two initial Gaussians
sufticiently far apart so that they have none or only a negligibly small interaction. Then they will quickly form one-
particle states, whose interaction can then be studied. In Fig. l we have plotted the temporal evolution for a stabilizing
cubic cross coupling ((„=2.5) between the counterpropagating waves. ' Comparing Figs. 1(a) and 1(c), we see that
the shapes of the one-particle solutions in the asymptotic regimes before and after the collisions are identical, whereas
during the interaction process itself a compound object is formed, which has a reduced amplitude when compared to
that of the one-particle solution [Fig. I (b)l. The latter aspect is similar to that obtained for the KdV equation in the
pioneering paper of the field. That the amplitude during the interaction is reduced in the present case can be intuitive-
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teraction is reduced in the present case can be intuitively
understood by keeping in mind that the interaction pa-
rameter g„ is stabilizing and thus tends to reduce the am-

plitude of the particle propagating in the opposite direc-
tion. A growing value of g„ leads to a stronger suppres-
sion of the amplitudes during the interaction process. As
long as the size assumed during the interaction is larger
than a critical limit, the one-particle solutions grow
quickly and assume their universal shape after the in-

X
FIG. 2. Annihilation of two one-particle solutions; the initial

state is identical to Fig. 1(a) (g, =3): (a) interaction and (b)
decaying remnants of the two one-particle solutions.

teraction is finished. If the size drops during the interac-
tion below this threshold value due to a further increase
in g„, however, the two one-particle states annihilate
each other completely, that is, nothing is left over in the
long-time limit, since the remnants surviving the collision
decay to zero. This is shown in Figs. 2(a) and 2(b); the
initial state is the same as in Fig. 1(a) except for the
change in g, (g„=3). The phenomenon of annihilation
clearly demonstrates that Eq. (2) is not exactly integr-
able in general; one would indeed not have expected this
to hold for a strongly dissipative system. The observa-
tion, however, that one-particle solutions can collide and
interpenetrate with unchanged shapes clearly demon-

strates that such a behavior can also arise in strongly dis-

sipative systems for a range of parameter values.
To explore further the similarities and the diff'erences

with the dispersive, exactly integrable systems, we have
investigated the collision between two- and one-particle
states, again as a function of g„keeping all the other pa-
rameters fixed. In Fig. 3 we have plotted the time se-
quence for g, =l. Similar to Fig. 1, it is possible that
one has complete interpenetration, even if a one- and a
two-particle state interact. Figures 3(a) and 3(c) show
the asymptotic regimes well before and well after the
collisions, whereas Fig. 3(b) shows a snapshot taken dur-

ing the interaction process. This interaction is rather
complex. Similar to one-particle collisions one has gen-
erally a reduction in amplitude. In addition, it seems
that the one-particle state interacts first predominantly
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Interpenetration of a one- and a two-particle state

(g, =1): (a) initial configuration, (b) interaction, and (c) final

state.

X
FIG. 4. Annihilation of a two-particle solution by a one-

particle state; the initial state is as in Fig. 3(a) (&, =2): (a) in-

teraction starts, (b) interaction nearly finished, and (c) final

state.
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with the first half of the two-particle state leaving the
second half nearly unchanged. Then the interaction with

the second half takes place: It might be worth noting
that the remnant of the one-particle state is somewhat
reduced in area during this latter part of the interaction.

In Fig. 4 we show an effect which we have not ob-
served for collisions between well formed one-particle
states. For g„=2 the one-particle state can annihilate
the two-particle state completely, but is itself left com-

pletely unscathed in the asymptotic regime after the col-
lision. Close inspection shows that half of the two-

particle state is slightly narrower than the one-particle
state. This explains why the one-particle state survives

the collision.
Aside from the complete interpenetration and the an-

nihilation, we have also observed other scenarios for the
interaction between one- and two-particle states. To
conserve space we discuss just one more example. In

Fig. 5 we show that it is possible that during the interac-
tion the second half of the two-particle state is quenched

(g, =1.5). That is, a collision between a two- and a
one-particle state can lead as a result of the interaction
to two one-particle states, a phenomenon also unknown

from completely integrable systems. We close this
description by noting that all these processes have been
observed over a range in parameter space. We have not
been able, however, to achieve complete annihilation of a
one- and a two-particle state thus far.

In this Letter we have studied particlelike solutions of

(a)

20 40 60 80 100 120

(b)

20 40 60 80 100 120

(c)

20 40 60 80 100 120

2804

X
FIG. 5. Partial annihilation of a two-particle state by a

one-particle state; identical initial condition as in Fig. 3

(g, =1.5): (a) initial interaction, (b) interaction nearly
finished, and (c) final state.

the envelope equations for counterpropagating waves as
they arise close to a weakly inverted bifurcation. For
this prototype equation we have shown that one- and
two-particle solutions can interact and interpenetrate
completely with their final size and shape well after the
collision being identical to that well before the interac-
tion, a feature obtained for solitons in exactly integrable
systems with an infinite number of conservation laws. In
the present strongly dissipative system, however, we find
for different parameter ranges also completely different
types of behavior including complete annihilation of two
one-particle states and the annihilation of a two-particle
state when it collides with a one-particle state. Since the
nonlinear evolution equation studied here arises in real
physical systems, is of prototype character, and shows a
wide range of unusual phenomena, further analytic re-
sults would be highly desirable.
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