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Quantization of Self-Dual Field Revisited
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A self-dual field is described by the Lagrangian for an ordinary scalar field with a term added to it to
take care of the self-duality constraint. A self-consistent Hamiltonian formulation is obtained using
Dirac's method. The constraints are second class, the auxiliary field drops out of the Hamiltonian, and
the quantized theory does not show any violation of causality.

PACS numbers: 11.10.Ef, 11.10.Lm

Self-dual fields in two dimensions, sometimes called
chiral bosons, are basic ingredients in the formulation of
the heterotic string. ' The quantization of a scalar self-
dual field has been greatly discussed recently. Siegel's
theory with a local symmetry seems to be equivalent to
the dimension-zero-field formulation of Floreanini and
Jackiw. However, the Euler-Lagrange equations for this
field lead to the result that it is the space derivative of
the field which satisfies the self-duality condition and not
the field itself. The Hamilton equations, on the other
hand, being linear, do result in a self-duality condition
for the field. Moreover, this field violates the micro-
causality postulate. No completely satisfactory quan-
tized theory of a self-dual field seems available. ' '

We propose here to study the quantization, by Dirac's
method, of the self-dual field described by the Lagrang-
ian for an ordinary scalar field with a term added to it to
take care of the self-duality constraint. The motivation
for such a study derives from an analogous situation in

Yang-Mills theory: The time component of the vector
potential A appears here as an auxiliary (Lagrange
multiplier) field. If we decide to choose the gauge

=0 before varying the action, we miss the first-class
Gauss's-law constraint. The Lagr ange equations of
motion do, however, lead to the vanishing of the time
derivative of this constraint and we are required to im-

pose an appropriate boundary condition to work in the
right sector. Keeping the 4 term allows us to derive the
Gauss's-law constraint from the Lagrangian and a self-
consistent Hamiltonian formulation is obtained by fol-
lowing Dirac's procedure where, if we wish, we may
eliminate 4 by a choice of gauge. For the action of a
scalar self-dual field proposed here a similar situation is
obtained except that the constraints are second class and
the auxiliary field is removed from the reduced Hamil-
tonian via the Dirac bracket. We show that a self-
consistent Hamiltonian formulation can be developed
and no violation of causality in the quantized theory
occurs.

The Lagrangian for a scalar self-dual field will be tak-
en to be

which is Lorentz invariant and contains a bilinear term
in the field p which is dynamical contrary to the auxili-
ary vector field which appears only linearly. The result-
ing equations of motion are

|)"B„tti+ (e"'+ tl"') B.X„=O,

(e"'+ rt"') 8,& =0.
From the self-duality equation (3) for dynamical field p
we derive 6"e1„/=0 and, consequently, from (2) we ob-
tain (e"'+ tI"') B„X„=O,but not the Klein-Gordon equa-
tion 9"9„X„=Ofor all the components of X„. This field
will be seen to be removed from the reduced Hamiltoni-
an obtained by following Dirac's procedure for con-
strained dynamical systems, leaving behind only the
physical dynamical field. It is convenient but not neces-
sary to rewrite (1) in a simpler form as

where q„,=diag(1, —1), eo& =1, X=ko+k~. The equa-
tions of motion then read as (80 —8~)&=0, (80 —8~)k
=0, etc. Denoting by pi and II=II =Bog+k [where
II'=8K/8(8, &)] the canonical momenta corresponding
to X and p, respectively, the primary weak constraint is

pq = 0. The canonical Hamiltonian is obtained to be

(s)

By requiring persistence in time of the primary con-
straint, the secondary constraint follows as &—:II —8~&
—X=0, and the extended Hamiltonian )V'=&, +up~
+v+, where u and v are arbitrary functionals, gives rise
to d&9/dt:—bb, H'l =&~A, —(u —2|i~v) which allows us to
assure through an appropriate choice of u and v that the
constraint + is preserved in time and no additional con-
straints arise in the theory. The two constraints are
second class as is evident from their Poisson brackets,

[+(x,t),+(y, t)[ = —28„8(x—y),
[p, (x, t ),p, (y, t )[ =0,
[+(x,t),pg(y, t)[ = —6(x —y) .

The Dirac bracket with respect to these constraints is
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easily found to be

[f(x,t),g(y, t)l* =[fg)+2 J JI dzdz'r), 6(z —z')tf pi(z, t)j [pi(z', t),gI

+ Jt dz[[f p ( zt)/[It( zt), g1 —(@ p )], (7)

[y(x, t), II(y, t)1*=6(x —y),

[y(x, t), y(y, t)l* = j11(x,t), II(y, t)1*=0.
The reduced Hamiltonian is then found to be

(8)

and we can implement the weak (second-class) con-
straints now as strong relations, e.g. , pi =0 and II=t)i&
+x, e.g. , rr—:no —n =O.

The Dirac brackets for the self-dual field are found to
coincide with the standard Poisson brackets,
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& =IIa, y,

which leads to the equations of motion t)op = t) ~ p,
|)oII=r)~II using (8). These are consistent with the La-
grangian formulation and no problem with the causality
arises on performing the canonical quantization, [f,g]*

—i [f,~,g,~]. The Lagrangian in the first-order for-
mulation may then be written as (II =0)

Z= —,
' f1+a y= —,

' II„(~~"+e")a,y, (10)

which is also conformal invariant. For the anti-self-dual
field satisfying r)oP = —t)iP we find X = —,

' II r)+P The.
action for the ordinary field may not, in general, be writ-
ten as the sum of the actions of these two self-dual fields.
In the prescription of canonical quantization operator
ordering and hermiticity of quantized operators must be
taken care of. %'e may alternatively use the path-
integral formalism due to Batalin, Fradkin, and Vil-
kowski for a theory with second-class constraints. It is
also possible to develop a gauge theory of chiral bosons

by adding a %'ess-Zumino field in the theory, and the
quantization along the lines of Ref. 9 again leads to the
action (10).
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