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We summarize the results of high-resolution simulations of cosmic-string evolution in an expanding
universe. The string network is found to relax to a scaling solution in accordance with Kibble’s “one-
scale model.” However, the long strings are found to have significant structure on scales much smaller
than the scale length of the long-string network, and the size of the stable loops produced by the network
is determined by this small-scale structure. This implies that the long strings rather than the loops will

probably play a dominant role in the observational effects of cosmic strings.

PACS numbers: 98.80.Cq, 98.60.Ac

Cosmic strings are of particular interest among astro-
physicists due to the realization by Zel’dovich! and
Vilenkin? that they could serve as seeds for galaxy and
large-scale structure formation. They also have direct
observable consequences through gravitational lensing,>*
microwave-background anisotropies,>® and a stochastic
gravitational-wave background.”-®

Shortly after they are formed, the motion of cosmic
strings is described very accurately by the Nambu equa-
tion of motion in an expanding background.® The evolu-
tion of a string network can be studied with the ‘““one-
scale model” invented by Kibble.'%"!> The basic param-
eter of this model is the long-string scale L which is
defined by prs=pu/L? so that a volume L3 contains a to-
tal (proper) length of string L. pys is the energy density
of the long strings (those longer than the horizon). The
simplest form of the one-scale model holds that

[5Ls=—2'a—(1+<vz))pLs“£p]_s, (l)
a L

where (v?) is a spatial average of v2 The first term on
the right-hand side of Eq. (1) gives the variation of prs
with the expansion of the Universe, and the second term
gives the energy loss from the long strings due to loop
production. The essential “one-scale’” assumption is that
the time scale for loop production is just the scale length
L of the infinite strings (i.e., C is a constant). Equation
(1) has a stable “scaling solution” in which Lot A
string network must obey such a scaling solution for the
cosmic-string galaxy formation to be viable, and there is
now increasing numerical evidence that it does.'*7!¢ If
we set L =yH, where H=a/dt/a is the horizon size,
then y is the scale length of the long-string network (in
horizon-sized units) which is a constant in a scaling solu-
tion.!” If we eliminate C in Eq. (1) in favor of y, (the
radiation-era scaling value) and we take (v2) to be a con-
stant [this is correct to % 0.02 for our radiation-era runs
and consistent with the model of Albrecht and Turok!'?
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y = L/H

for (v 2], the solution of (1) is

y—y wH—1
A L [_a_] , 2)
Yo— 7r ao

where ag and yp are initial values. Figure 1 shows the
evolution of 7 vs (a/ae)®” ™" for several radiation-era
runs. The dashed curve is from our highest-resolution
run with our original code (code 1), and the solid curves
are from three different runs of our second, higher-
resolution code (code 11) with different initial y’s. Clear-
ly, the results from our two codes coincide quite closely.
When we include our estimated errors, our value for
1/y?=pLsH?/u is 52 + 10 which compares to our previ-
ous value of 80+ 40 obtained from code I. The dif-
ference between the central values of these two measure-
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FIG. 1. The evolution of the scale length of the long strings
wh! ;
y vs (a/ao) for the three code-II runs (solid curves) and
one high-resolution code-1 run (dashed curve). The straight
lines are least-squares fits to the curves. {v?2) has been set to its
scaling-solution value (v?) =0.43.
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ments is due to a reduction in our estimated systematic
errors rather than an actual difference in the results of
the two codes. For comparison, Allen and Shellard!'®
(hereafter AS) obtain 1/y7 =64 % 16 while Albrecht and
Turok'® (hereafter AT) obtain 1/y?=210, which they
estimate could be as much as a factor of 4 too large due
to systematic errors which they have not thoroughly in-
vestigated.

The simplified one-scale model [Eq. (2)] predicts that
these curves should be linear and intersect at
(a/ag)“?~'=0 (a=o0) at the scaling-solution value
y,==0.14. Except for an initial transient due to the pecu-
liarities of the initial conditions, these curves fit straight
lines that nearly converge to y=0.14 at @ =oo very well,
so Kibble’s model appears to accurately describe the re-
laxation to scaling in the radiation era. Our matter-era
value for 1/y2 is somewhat smaller: 31=%+7. AT’s
matter-era value is 1/y2 = 64. The Kibble-model pre-
diction for the relaxation to the matter-era scaling solu-
tion is worse than in the radiation era, and the matter-
era value for C is 40% smaller than the radiation-era
value. Nevertheless, Kibble’s one-scale model does seem
to give a reasonably good description of the behavior of
the long strings.

There is, however, a crucial piece of physics that is not
included in the Kibble model. Both our simulations and
the AS simulations show a significant amount of struc-
ture at scales much smaller than L. This structure is due
to the presence of discontinuities known as “kinks” in the
velocity of and tangent to the string. Four kinks are pro-
duced whenever a pair of string segments cross each oth-
er and intercommute (break and reconnect the other
way). In a flat space-time, the shape of these kinks is
preserved by the equations of motion, while in an ex-
panding universe their amplitude decays with the expan-
sion as a2’ ~'~q ~% for v2=0.43 % 0.02, which is our
mean radiation-era value.'> One might expect that the
kink density would be reduced by the tendency for the
more wiggly pieces of string to chop off the network, but
we have found that this can only compensate for the pro-
duction of kinks when the kink density is quite high.
Gravitational-radiation back reaction might also tend to
smooth out the small-scale structure on the long strings,
but this will only operate on scales that are smaller than
our current resolution.

The preponderance of kinks on the long strings makes
it very difficult to evolve the strings numerically. Stan-
dard finite-differencing schemes will progressively
smooth the kinks especially when numerical diffusion is
invoked to prevent the growth of short-wavelength insta-
bilities. In code 1,'* we attempted to minimize smooth-
ing by invoking numerical diffusion only when an insta-
bility started to develop. AS (Ref. 16) have used a so-
phisticated algorithm originally developed to handle
shock waves which apparently halts kink smoothing after
the kink has spread over three or four grid points. Our
new code'’ (code 11) maintains accurate resolution down

to the scale of the interparticle separation by evolving
right- and left-moving waves on separate grids that move
with respect to each other. Smoothing is only invoked
when the separation of two kinks becomes smaller than
the mean interparticle separation. The algorithm be-
comes exact in the flat-space limit (except for the merg-
ing of kinks that is sometimes required upon intercom-
mutation). It is quite reassuring that these three codes
all seem to give quite similar results. The AT code has a
significant amount of numerical smoothing, and we be-
lieve that this is responsible for much of the difference
between their results and those of the three higher-
resolution codes.

In Fig. 2, we have plotted log;o.L/R vs log;oR/H for a
radiation-era, transition-era, and a matter-era run. The
fractal dimension of the string d is given by .£L « R, so
the slope of the curves in Fig. 2 is just 4 —1. On large
scales (R > L), the strings have a fractal dimension very
close to 2, just like random walks, but on smaller scales
the fractal dimension decreases to a value somewhat
larger than 1: from ~1.12 in the radiation era to —1.05
in the matter era. The matter-era fractal dimension is
the smallest because there are fewer string crossings and
there is more damping from the universal expansion in
the matter era. The fractal dimension at small scales
does not remain constant during our simulation runs.
This is because our resolution is fixed in physical units so
that our small-scale resolution range increases as L o H.
Thus, if the fractal dimension remained fixed, then the
total amount of energy in small-scale wiggles would in-
crease with time. Instead, we find that the total amount
of energy in small-scale wiggles remains very nearly con-
stant in time. In our radiation-era runs, this is about
45% of the total energy, while in the matter era it is
about 28%. There is also a slight variation of the fractal
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FIG. 2. logi0.L/R vs logioR/H for a radiation-era run (open
circles), a transition-era run (crosses), and a matter-era run
(filled triangles). R is the distance between two points on a
long string and L is the proper length of the segment of string
which connects those two points.
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dimension (i.e., slope of the curves) with size. The frac-
tal dimension is smaller at very small scales (especially
in the matter era). This suggests that in the physical
limit, d might be 1 at very small scales, and gradually in-
crease to d = 1.1 (d==1.05 for the matter era) for R
slightly smaller than L. The effect of the back reaction
of the strings’ own gravitational radiation might be to
smooth the strings on scales of order GuH (or somewhat
larger).

The presence of this evolving structure on very small
scales suggests that our results might be sensitive to nu-
merical parameters that affect the strings on the smallest
scales. We have checked very carefully for any evidence
of this and found none. We have done two runs with
identical initial conditions differing only in that one had
2.5 times as many sampling points as the other. We find
that the values of p_s differ by less than 4% throughout
the two runs. The loop distributions are also very simi-
lar, in contrast to some of the lower-resolution runs dis-
cussed in Ref. 14. Our high-resolution runs have
confirmed the tentative conclusion of Ref. 14 that when
the minimum cutoff on the loop size is sufficiently small,
it has no effect on the long-string evolution. Another test
we have performed involved adding moderate and large
amounts of small-scale power (in the form of random ve-
locities at every point) to the initial conditions. This
made a noticeable change in the evolution of the loop
distribution, but almost no change in the predicted long-
string scaling density. Thus, it clear that we have
achieved high enough resolution so that the details of the
small-scale structure on the strings do not have any
effect on the large-scale behavior of the long strings, and
this implies that our results for the large-scale behavior
of the long strings are independent of the evolution on
small scales.

The most important consequence of this small-scale
structure on the long strings is that the stable non-self-
intersecting loops that are produced by the string net-
work are very much smaller than the scale length of the
string network L. Previous work'®!3!81% had expected
that “parent” loops of size ~L would break off the net-
work and then fragment into smaller stable loops that
would not be very much smaller. We find quite a
different picture: First, the size of the stable loops pro-
duced is governed by the small-scale structure on the
strings and not by L. In runs with smooth initial condi-
tions, the size of the stable loops seems to be proportion-
al to the separation between kinks. In these runs, both
the mean separation between kinks on the long strings
and the average stable-loop size actually decrease with
time in physical units. When we run from initial condi-
tions with excess short-wavelength power, we find that
the stable loops are produced at a constant physical size
which is smaller than in the smooth case. In all cases,
the strings are always growing smoother at fixed physical
scales, so the mean kink amplitude must be decreasing.
This suggests that the physical size of the stable loops
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should eventually begin to increase, but we have seen no
sign of this even when the typical stable loop has a prop-
er length of about 10 “3H. This implies that the strings
are not yet smooth enough to produce larger stable loops.

We also find that more than two-thirds of the energy
lost by the network goes directly into very tiny loops.
Only 25% to 30% of the energy is chopped off the long
strings in the form of large (~L) parent loops. This
might seem puzzling in view of the success of Kibble’s
one-scale model. Figure 3(a) shows the configuration of
the long-string network at a late time in one of our
smaller radiation-era runs. The parts of the string that
will chop off the network during the next factor of 1.2 in
expansion are shown as larger dots. Figure 3(b) shows

(a)

(b)

FIG. 3. (a) The configuration of all the long strings in one
of our smaller runs when the horizon is 1.57 times the box size.
The thick curves show the pieces of the long strings that will be
chopped off into loops after an expansion factor of 1.2, and the
thin curves show pieces that will remain on the long strings.
(b) The configuration of these same string points after expan-
sion by a factor of 1.2. Note that much of the long string that
will be chopped into loops is made up of moderately long seg-
ments, while the loops produced are essentially microscopic.
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the same string points an expansion factor of 1.2 later.
Most of the loop production comes from sections of the
string that are not very much shorter than L (L =22%
of the box length). The stable loops that are produced,
however, are all so small that they just appear as points
in Fig. 3(b). Thus, the energy that goes into loop pro-
duction comes from ‘““parent regions” with length of or-
der L as Kibble’s model would suggest. These parent re-
gions tend to be more highly curved and have higher ve-
locities than the rest of the long-string network. The
preponderance of small-scale structure on the long
strings causes these parent regions to fragment into very
tiny loops either before or after the parent region chops
off of the long string.

In summary, our high-resolution simulations of
cosmic-string evolution have revealed a qualitatively new
picture for cosmic-string evolution. Kibble’s one-scale
model gives a reasonably good description of the large-
scale behavior of the string network, but it does not ac-
count for the small-scale structure on the long strings
which prevents the formation of a significant number of
stable loops with proper length larger than 10 ~3H in the
radiation era. The very small size of stable loops reduces
the expected gravity-wave amplitude enough so that the
best 1imit?® on Gu from measurements of millisecond
pulsar timing residuals’ is Gu <4x10 "% Lower-reso-
lution simulations had suggested an upper bound'3 that
was a factor of 100 smaller. Another important implica-
tion of our new results is that the dominant gravitational
perturbations from strings probably come from the long
strings as Zel’dovich originally suggested! and not from
the loops. This means that the pattern of galaxy and
large-scale structure formation due to cosmic strings is
still largely unknown, and it suggests that there may be
little difference between structure formation from gauge
strings and from global strings which have long-range in-
teractions and do not radiate much gravitationally.
Work is currently under way to include the gravitational
accretion of matter in our string-evolution code in order
to calculate the details of galaxy and large-scale struc-
ture formation to be expected in the string scenario.
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