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Critical Dynamics and Global Conservation Laws
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We consider the effect on critical dynamics of global, rather than local, conservation laws. Restricting
our consideration to model B (conserved order parameter) we present theoretical arguments and numeri-
cal evidence that global conservation is sufficient to establish the universality class of model 8 and can be
used to construct faster algorithms for the calculation of dynamic critical exponents.
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where P = I/kttT, S; = ~ 1, h is the external field, and K
is the ferromagnetic coupling. In order to specify a dy-
namics in these models we must also specify a set of con-
servation laws. In model 4 in the Hohenberg-Halperin
classification ' nothing is conserved. In model 8 the
magnetization is conserved. The important point to note
is that the conservation law is local; i.e., in order for the
magnetization to change in a region specified by some
boundary there must be diffusion of the magnetization
across that boundary.

The equation of motion that governs the evolution of
these models' is

ay(x t) „BF(y) (,) „( )
Bt By

where

(2)

F(y) = Jl dxd[[Vy(x)]'+ey'(x)+ y'(x)I (3)

The seminal work of Hohenberg, Halperin, and Ma
provides a framework within which one can understand a
great deal about dynamical evolution in the neighbor-
hood of the critical point. ' However, with the advent of
nonlocal acceleration algorithms that eliminate or
reduce critical slowing down, new questions are being
raised which were not addressed in previous studies. In
particular, if the new nonlocal acceleration algorithms
are to be adapted to dynamics other than model A (e.g. ,

Glauber dynamics) we are forced to consider whether
global conservation laws are sufficient to establish dy-
namic universality classes or whether local conservation
is essential. In this Letter we consider this question for
two dynamical models that only conserve magnetization
globally. These models, which are a variation of model
8 which we call model 8', are studied numerically on the
nearest-neighbor Ising model in d=2. We also discuss
analytic results in d=l and theoretical arguments in
d~2.

Consider a lattice with an Ising spin at each site. The
Hamiltonian is given by

is the Landau-Ginzburg free energy, e=(T —T, )/T„
Iit(x) is the order parameter (magnetization in Ising
models), h(x, t) is the applied field, 8(x,t) is a Gaussian
noise with (8) =0, and

(8(x,t)8(x', t')) =2I 8(x —x')b'(t t') . — (4)

for t large. The relaxation time r diverges as g' as the
critical point is approached, where g is the correlation
length. The exponent z which characterizes critical
slowing down is known, for model 8, to be equal to 4 —g
in Ising models' with d ~ 2 and 5 in ' d =1.

We have employed two algorithms to investigate the
effect of global conservation on z. The first employs a
Creutz demon' which has a "bag" in which it can carry
magnetization. The demon visits each site at random. If
a flip of one or more spins is to be performed in the
neighborhood of a site, the demon bag must be checked
to see if it has enough room to accommodate the flip.
For example, suppose we associate spins which are down
with particles and spin up with holes. We then specify,
in this example, that our demon can only carry up to two
particles. The algorithm then proceeds by visiting a site
in the lattice at random and choosing, also at random,
one of its nearest neighbors. This pair of spins is now
flipped using the standard Metropolis criterion. Howev-

The parameter I o determines whether Eq. (2) describes
evolution with a conserved or nonconserved order param-
eter. ' For model A, I 0 is a constant, and for model 8,
I 0 = XOV . The parameter ko sets the time scale.

The most frequently used algorithm to obtain model-8
dynamics with Ising models is Kawasaki spin exchange
in which nearest-neighbor spins of opposite sign are ex-
changed if the energy criteria are met. The interchange
of nearest-neighbor pairs enforces a conservation on the
order parameter which is clearly maintained on all
length scales. With this method one can measure the
critical exponents that characterize the slowing down of
the dynamics as the critical point is approached. In par-
ticular, for model 8 we measure the energy autocorrela-
tion function (E(t)E(0)) which is expected to decay as

(E(t )E(0))—e
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er, if the flip increases or decreases the number of parti-
cles the demon must be consulted to see if it can accept
or give up the requisite number. If the demon constraint
is satisfied the spins are flipped. If it is not, the flip is not
made and the demon goes onto the next site.

Clearly this algorithm restricts the magnetization to a
shell of finite width which depends on the bag size. If we
allow the bag size to go to infinity we recover the
Metropolis algorithm for model A. Since the demon
hops randomly carrying magnetization in its bag to arbi-
trarily distant sites, the magnetization is not conserved
locally for a nonzero bag size even in an approximate
manner; i.e., the magnetization does not diffuse. With
this algorithm we can study the effect of global conserva-
tion on z. Moreover, since the algorithm also contains a
subset of spin flips that are identical to nearest-neighbor
Kawasaki exchanges, the limit of the bag size going to
zero produces the Kawasaki algorithm. Consequently,
we can vary from model A to model 8 by varying the
bag size.

The second algorithm we study is simply Kawasaki ex-
change of spins separated by an arbitrary distance. This
algorithm will have the same z as the one described
above as can be seen from the following argument. Con-
sider a sequence of flips in the Creutz algorithm defined
above that begins with a pair of spins flipped from down
to up and suppose we have again set the bag size at two.
This sets the demon so that. no additional down-to-up
flips can be made until an up-to-down flip of a pair of
spins resets the demons to zero. Until the resetting, only
interchanges that keep the magnetization fixed are al-
lowed. As the magnetization per spin of the system is
neither zero or one, the time between an up-to-down pair
flip and a down-to-up flip is finite. With this procedure
we are performing two types of updates. A finite frac-
tion of the flips are simply nearest-neighbor Kawasaki
spin exchange and the rest of the flips are simply up-
down pairs interchanged with a finite time delay. Since
the finite time delay and the fact that we are flipping
four spins in pairs rather than one up-down pair will not
affect the universality class, we can consider this part of
our procedure as Kawasaki exchange with an arbitrary
distance between the pair or pairs of spins exchanged.
We can view this procedure for arbitrary bag size as hav-

ing spin-interchange steps in which the interchange with
the spin partner is delayed by a time set by the bag size
and accomplished with an arbitrarily distant partner.

The average time to restore magnetization to the
demon is a function of the size of the demon bag (which
is the magnetization credit limit). In this way a time
scale is introduced; below this scale the dynamics ap-
pears as model 4 because the effect of the conservation
law is not felt. At large times, above that scale, the mag-
netization debt has been payed back and then the true
nature of the dynamics (i.e., the conservation law) will
be seen in the slowest relaxation time of the system. Be-
fore we discuss what z we should expect for the demon
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algorithm we discuss the Kawasaki exchange with
arbitrary-distance flips.

In d =1 the exponent z equals 5 for nearest-neighbor
Kawasaki exchange. ' For Kawasaki exchange with
arbitrary-distance Aips the exponent'' (z') equals 3.
This can be easily derived as seen from the following ar-
gument: Since T, —0, the spins flipped will always be on
domain walls. Each site in the lattice is visited once in a
Monte Carlo update; hence the probability of obtaining a
pair of spins of opposite sign on domain walls is propor-
tional to g . The domain-wall motion induces either a
random walk of the domain walls in pairs, which will an-
nihilate domains in up-down pairs, or a random walk of
a single domain until it merges with one of the same
sign. In either case the random walk must cover a dis-
tance g. Taken together these two processes lead to a re-
laxation time which scales as g .

In order to understand this process in higher dimen-
sions we return to Eq. (2). The term I 0 = —XOV sets
the time scale through the parameter A, o. If we were to
change the "hopping distance" associated with the
diffusion process in model 8 by a fixed factor l then we
would multiply Xo by l . If we ignore the noise term for
the moment (i.e., in the mean-field approximation) this
is equivalent to rescaling time. That is t in Eq. (2) is re-
placed by t =l t.

Including the noise term does not change the result. If
we replace t and t' by t and t ', respectively, and multiply
Xo and 8(t t') (to preserv—e normalization) by I, then
Eq. (4) implies that B(x,t) I B(x,t).

Since the process we are considering is the large-time
limit of the approach to equilibrium, we expect no aver-
age spatial inhomogeneity. Hence, the "hopping dis-
tance" we use can be treated as a random variable. This
implies that we multiply ko by the average l . We
should point out that a slight bias towards longer-range
flips occurs due to the ferromagnetic correlation between
the spin chosen initially and its neighbors. This correla-
tion decays with a power law at the critical point and
leads to a higher-order correction which does not alter
the dominant scaling behavior. For pairs chosen at ran-
dom I —L, where L is the linear dimension of the sys-
tem. From Eq. (2) and the above discussion we obtain

(6)

In order to test this result numerically we performed
Monte Carlo simulations for model B with arbitrary-
distance flips on Ising models in d =2. To obtain values
for z we used finite-size scaling which fixes L =g. From
Eq. (6) then we have z' =z —2 which is consistent with
the one-dimensional result.

In Fig. 1 we present the data for r in a log-log plot.
The slope of the line is z'. The best fit to the data gives
z'=1.78 ~ 0.04, consistent with our analysis.

Returning to the demon algorithm, we expect that the
result embodied in Eq. (6) will still apply. This follows
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FIG. 1. Log-log plot of the energy autocorrelation time vs

lattice size for 2D Ising-Kawasaki dynamics with arbitrary-
distance spin exchange (squares) and nonlocal demon (circles).
The critical exponent z' equals 1.78~0.04 for the arbitrary-
distance Kawasaki and 1.74+ 0.11 for the demon algorithm.
These results are consistent with z'=z —2. Each point repre-
sents at least 500000 trials and the width of the points is

greater than the statistical error unless otherwise specified.

from the decomposition of this algorithm into a nearest-
neighbor Kawasaki exchange and a Kawasaki exchange
with arbitrary-distance flips as discussed above. Since
z'(z, it follows that the decorrelation will be dominated
by the arbitrary-range Kawasaki exchange which is the
faster of the two algorithms.

In the figure we also present the data for r in a log-log
plot obtained with the demon algorithm. The best fit for
z' is 1.74 0.11, again consistent with our arguments.

It is somewhat surprising at first that a spin-exchange
algorithm, even one with arbitrary distance between ex-
changed spins, has a lower value of z than a spin-flip al-
gorithm. One way to understand this is to realize that
the approach to equilibrium is determined by two fac-
tors: the size of the region of phase space that the sys-
tem must sample in order to find that part corresponding
to the equilibrium state and the speed at which phase
space is sampled. By changing the algorithm from a lo-
cal diff'usive evolution to one of hopping with arbitrary
distance we have sped up the sampling of phase space.
We have no proof but it seems reasonable to assume that
the arbitrary-distance hopping algorithm samples phase
space as fast as a spin-flip algorithm. Moreover, by
keeping the global magnetization constraint we have re-

stricted the region of phase space the system must sam-
ple in order to find equilibrium. For these reasons we ex-
pect the nonlocal exchange algorithm to be faster than
the spin flip.

In conclusion, we have argued that global conservation
of the order parameter is sufficient to establish the
universality class of model 8 with a rather trivial
modification to the exponent z. The demon form of the
algorithm is easily generalized to other conservation
laws. This has significant implications for the adaptation
of nonlocal acceleration algorithms to systems with con-
servation laws and the use of these algorithms to obtain
information about dynamics. Clearly we have not
presented a proof; however, the heuristic arguments and
the numerical data are, we believe, quite convincing.
Moreover, we would hope that this work would stimulate
work of a more rigorous nature. In addition, the simple
modification of z' =z —2 when finite-size scaling is used
makes the nonlocal algorithm, with either arbitrary-
distance spin exchange, or the more general demon
method, a valuable tool for obtaining accurate values for
z in dynamical models with conservation laws.
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