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We report light-scattering measurements of powder diffraction patterns of crystals of essentially hard
colloidal spheres. These are consistent with structures formed by stacking close-packed planes of parti-
cles in a sequence of permitted lateral positions, 4,8,C, which shows a high degree of randomness.
Crystals grown slowly, while still containing many stacking faults, show a tendency towards face-

centered-cubic packing; possible explanations for this observation are discussed.

PACS numbers: 61.50.Em, 61.70.Ph, 82.70.Dd

Assemblies of hard spheres play an important role in
statistical physics as models for simple liquids and be-
cause they constitute what is probably the simplest sys-
tem to show a freezing-melting transition.! It is perhaps
surprising therefore that the structure of a crystal of
hard spheres does not appear to have been established
unambiguously. Here we report a study by “powder”
light crystallography of the structure of crystals formed
by essentially hard colloidal spheres. First we describe
the experiments and their interpretation; we then discuss
the results, their relevance, and connections with other
work.

The particles consisted of poly-methylmethacrylate
cores stabilized sterically by thin (~15-nm) layers of
poly-12-hydroxystearic acid.? They were suspended in a
mixture of decalin and carbon disulfide in proportion
chosen to match (nearly) their refractive index (~1.51).
This provided nearly transparent samples which never-
theless showed quite strong single scattering of light.
The particles were the same as those used in a study of
the glass transition, having mean radius about 170 nm
and polydispersity [(standard deviation of the particle
size distribution)/mean] of <$0.05.% Effective hard-
sphere volume fractions ¢ [(volume occupied by the com-
posite particles)/(total sample volume)] were calculated
by procedures described previously.>>¢

With increasing ¢ suspensions of this type show the
phase behavior expected for hard spheres®>® (and deter-
mined largely from computer studies’®). For ¢ < ¢r
=0.494. the freezing concentration, the equilibrium
state is a colloidal fluid. For ¢ > ¢, =0.545, the melting
concentration, the equilibrium state is crystalline. At
¢=¢c = 0.58 a glass transition intervenes so that for
¢> ¢c a long-lived amorphous phase is formed. Col-
loidal crystals are weak;® slow tumbling of the samples
readily “shear melts” any crystals present to form repro-
ducible metastable fluid phases. Then, when left undis-
turbed, samples in the concentration range ¢r < ¢ < ¢¢

recrystallize. Crystallization is nucleated homogeneous-
ly'® at random sites throughout the samples and small
crystallites of size in the range 10-50 um are formed.
For ¢r < ¢ < ¢ gravitational settling of the crystallites
leads to coexisting colloidal fluid (¢ =¢F) and crystalline
(¢ =¢ar) phases separated by clearly visible boundaries.?>
For ¢y < ¢ < ¢¢ the samples become completely filled
with crystallites.

The rate of crystal nucleation and growth is deter-
mined by competition between the thermodynamic driv-
ing force and viscous or frictional effects,!' both of
which increase with ¢. A maximum crystallization rate
is found which, in our system, occurs at ¢ = ¢5,.° In a
sample at this concentration crystallization is essentially
complete in 1 h. By contrast at ¢ = ¢r, where the driv-
ing force is small, and at ¢ = ¢, where particle diffusion
is slow, complete crystallization can take several days.

In this system the naturally occurring crystallization
process provides samples containing many (> 10°
cm ~3) randomly oriented crystallites, which are ideal
for the light-scattering equivalent of powder crystallog-
raphy. To make the measurements, the beam of a Kr*-
ion laser was expanded and passed through a rectangular
aperture so that a volume of the sample of order 1 cm?
was illuminated. The 1-cm? square-cross-section sample
cell was placed on the axis of a cylindrical bath contain-
ing liquid which matched the refractive indices of the
suspension (closely) and of the glass sample cell (ap-
proximately). Parallel scattered light was focused by the
bath, acting as a cylindrical lens, onto a vertical slit
which preceded a diffuser and a photomultiplier-tube
detector. These detection optics were mounted on an
arm which rotated, under computer control, about the
bath axis. Scans over scattering angles from 20° to 140°
in steps of 0.25° (roughly the angular resolution of the
optics) took about 10 min.

For orientationally invariant materials such as fluids
or a powder of crystallites the intensity of scattered light
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I(Q) can be written as 1(Q) e« P(Q)S(Q); here Q is the
scattering vector, P(Q) is the single-particle form factor
(determined by the refractive-index profile of the parti-
cles), and S(Q) is the structure factor. Form factors
were determined, as described elsewhere,® by measure-
ments of I(Q) on dilute suspensions [for which S(Q)
=1]. Structure factors, in arbitrary units, were obtained
by measuring 7(Q) for the concentrated suspensions and
dividing by the appropriate form factors. A typical form
factor is shown in Fig. 1(a); it has a shape similar to that
expected for a particle with a spherically symmetrical
core-shell refractive-index profile. Because of the deep
minimum near Q =3X 10° cm ~!, structure-factor data
become unreliable in this region of Q.

Figure 1(b) shows measurements of structure factors
of a sample at ¢ =0.535, just below the melting concen-
tration, '? where crystallization is rapid. The lower curve
is for the metastable fluid obtained immediately after
shear melting the sample by slow tumbling. The upper
curve was measured about 1 h later, when crystallization
appeared to be complete, and is of a rather unusual form
for a crystal. A sharp Bragg reflection is evident, but
also a broad, structured band of diffuse scattering.

To analyze this finding we speculate on possible struc-
tures. It is generally expected that the crystal structure
of spheres with short-ranged isotropic interactions should
be close packed. Close-packed structures may be formed
by the stacking of hexagonally close-packed layers of
particles.!>!* Each layer can adopt one of three lateral

positions, A4, the reference position, B, obtained by a
translation a/3+2b/3 relative to 4, and C, obtained by
displacement 2a/3+b/3, where a and b are (hexagonal)
lattice vectors in layers. The sequence ...4ABABAB. ..
gives a hexagonal close-packed (hcp) structure, whereas
...ABCABC. . . corresponds to face-centered cubic (fcc).
However, the only essential requirement for close pack-
ing is that adjacent layers, n and n + 1, have different po-
sitions. In the case of hard spheres there seems no
reason to expect much “communication” between layers
n and n+2. Thus we postulate that a hard-sphere crys-
tal may adopt a “random” stacking sequence such as
...ABCBCACB. . ..'> For generality we assign a proba-
bility a that layers n and n +2 have different positions.
Then a =0 gives hcp and a =1, fcc.

Calculation of the powder diffraction pattern of a
crystal comprises two operations, determination of its
reciprocal-space structure and orientational averaging.
For a close-packed random-stacked (in the sense de-
scribed above) crystal the former was worked out many
years ago by Wilson,!3 using finite-difference equations,
and by Hendricks and Teller,'® using correlation-
probability matrices. We take the third lattice vector c
to be perpendicular to the close-packed planes and to
have a length equal to the interplanar spacing'# (this is
one-half of the length usually used to index an hcp crys-
tal). Then, intensity is found in reciprocal space only
along the hexagonally arranged {hk} lines. If (h—k)/3
is integral, the intensity appears as points which give rise

(@)

P(Q)
S(Q)

(b) 8 ©

1.2 24x10° 1.5 24

2.7x10°

s(a)

®

2.7x10° 15 21 2.7x10°

Q(cm™) Q(cm™)

FIG. 1. (a) Typical measured form factor P(Q) (Q is scattering vector) for the particles of radius 170 nm. (b) Structure factors
S(Q), in arbitrary units, for a sample just below the melting concentration: lower curve, metastable fluid; upper curve (shifted up
one division for clarity), polycrystal. (c) Comparison of crystal data from (b) with theory for completely random stacking (stacking
probability @=0.5). (d) Section of reciprocal space in (a*,c*) plane showing 00/ line and one of the six {10/} lines. The plot at the
right-hand side shows the distribution of intensity 7(/) along the 10/ line for a=0.5. Spheres (circles) are drawn for scattering vec-
tors Q corresponding to the *“prepeak” at Q =~ 2x10° cm ~! and the maximum at Q = 2.25x10° cm ~! in (c). Note the large area of
intersection of the smaller sphere with the diffraction-broadened 10/ rod near reciprocal-lattice point 100. (e) Structure factor of
crystalline phase of sample in coexistence region; theory has a=0.58. (f) Structure factor of “sedimentary” crystal (see text);
theory has a=0.8. In (c), (e), and (f) dotted lines are experiment, and solid lines are theory.
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to those Bragg reflections common to both perfect fcc
and perfect hcp structures. If (h—k)/3 is not integral,
the intensity varies continuously with index / along the
lines {hk} in a manner determined by the stacking prob-
ability a. For a =0.5 the relative intensity oscillates be-
tween 1 at 2/ even and 9 at 2/ odd.'* A section of re-
ciprocal space in the plane of the reciprocal-lattice vec-
tors a* and c* is shown in Fig. 1(d). The finite size of a
real crystal broadens the points into nodes and the lines
into rods.'*!” Orientational averaging may be achieved
by considering a sphere of radius Q/2n centered in re-
ciprocal space'>'*!” [see Fig. 1(d)]. Contributions to
the real-space powder intensity are proportional to the
product of the fraction of the area of the sphere surface
which intersects a feature in reciprocal space and the in-
tensity of the feature.

We have calculated powder patterns using the expres-
sions of Wilson!3 and the orientational-averaging pro-
cedure described by Brindley and Méring.!” As adjust-
able parameters we need an overall scaling factor, the
average crystallite dimensions in the a and b directions
(assumed to be the same and typically found to be ~25
um) and the c direction (typical value ~15 um), and
the stacking probability a. To account for the Brownian
motions of the particles, thermal diffuse scattering was
included.'* We assumed an Einstein (independent oscil-
lator) model with root-mean-square displacement of a
particle about its lattice site equal to 13% of the mean
interparticle spacing.'® The slight disagreement between
experiment and theory observed at small values of Q in
Figs. 1(c) and 1(e) probably reflects the neglect, in this
simple model, of correlations between the displacements
of different particles.

Figure 1(c) shows the data of Fig. 1(b) compared with
the theoretical curve for a=0.5. The features in this
pattern may be understood by reference to Fig. 1(d). As
the radius of the sphere is increased from Q =0, intensity
is first obtained on intersection of the six diffraction-
broadened {10/} rods at /=0. The “prepeak” in the
diffuse scattering of Fig. 1(b) results from the large area
of this first intersection and not from a maximum of the
intensity in reciprocal space. On further increase of Q
the Bragg reflections {001} are obtained from the 00/
line. These correspond to the main reflections from the
close-packed planes [one set of (111) planes in the usual
fcc indexingl; since, for these reflections, the scattering
vector Q is perpendicular to the planes, the sequence of
lateral positions is irrelevant. The subsequent maximum
in the diffuse scattering results from the maxima at /
=+ 1 on the {10/} rods.

Agreement between the experimental data of Fig. 1(c)
and the theory with @ =0.5 is good. Figure 1(e) shows
the data for the crystalline phase of a more dilute sample
at volume fraction ¢ =0.523 in the coexistence region.
This sample took about 1 day for complete crystalliza-
tion and phase separation. The high-Q maximum in the

diffuse scattering is now absent implying a redistribution
of intensity along the {10/} lines in reciprocal space.
Again the data can be described well by theory, now
with a stacking probability ¢ =0.58 which indicates a
slight preference for local sequences for fcc stacking.
Figure 1(f) shows data for a crystal grown by a mecha-
nism not mentioned hitherto. A relatively dilute sample,
¢ =0.25, was left undisturbed for several weeks. On slow
gravitational settling of the particles, crystals grew from
the bottom of the cell. These data can be fitted roughly
by the theory with a=0.8. The incipient 200 line of the
fce structure [105 in the indexing of Fig. 1(d)] is clearly
evident at Q@ =2.5%x10° cm ~ .

Thus there appears to be a correlation between struc-
ture and the rate at which the crystals have grown. For
crystals which grow at the maximum rate the stacking is
essentially completely random, a =0.5. We expect this
finding to be generic for hard spheres: It is difficult to
imagine a mechanism by which such a completely ran-
dom stacking would be influenced by minor departures of
the interparticle potential from the hard-sphere form, for
example, slight softness or attraction,>® or by a small po-
lydispersity. However, such factors could be responsible
for the tendency towards the fcc structure, a > 0.5, ob-
served in crystals grown at lower concentrations where,
under the influence of a smaller “supersaturation,” the
particles presumably have more time to explore possible
lattice sites. On the other hand, it may be that the true
equilibrium structure of hard-sphere crystals is fcc, but
that the difference in free energies between this and oth-
er structures is very small. In fact, several calculations'®
have indicated that the free energies (per particle) of fcc
and hcp hard-sphere crystals are the same within an un-
certainty of no more than ~2x10 ~3kz7. Thus long-
lived nonequilibrium states are easily achieved. Non-
equilibrium hydrodynamic interactions (on settling) or
macroscopic shear deformations?® may favor the forma-
tion of certain structures which will persist and be hard
to distinguish from true equilibrium states. Clearly to
test these conjectures will require a very detailed study
of the interparticle interaction and a more quantitative
analysis of the nucleation and growth processes.

Most atomic materials which crystallize into close-
packed structures choose either essentially perfect hcp or
fcc. Occasionally a significant fraction of stacking faults
is found, particularly near a structural phase transition.
In fact, Wilson'? developed his theory to explain x-ray
diffraction measurements on predominantly hcp cobalt:
These data?! could be explained by random stacking
with a = 0.1, i.e., on average one fault every ten planes.
To our knowledge no simple atomic system shows the
complete randomness in stacking, @ =0.5, found in the
present work.

Random stacking of colloidal spheres was discussed
previously by Sanders?? in connection with gem opals,
which consist of solidified arrays of silica particles
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formed from aqueous suspension. Sanders showed that
the diffuse scattering associated with the stacking disor-
der is an important factor determining the gem quality,
the beautiful coloration observed when opals are il-
luminated by white light. However, he was not able to
obtain from these naturally occurring materials powder
diffraction patterns, such as those of Fig. 1, suitable for
quantitative analysis.
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