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Exact Derivation of the Modified Young Equation for Partial Wetting
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We examine a planar wetting model which exhibits a sessile drop and microscopic droplets. The con-
tact angle of the sessile drop obeys the modified Young equation. The microscopic droplets diverge in
size and the contact angle vanishes at a single wetting temperature.

PACS numbers: 68.45.Gd, 05.50.+q, 64.60.—i, 75.10.Hk

The study of wetting received new impetus about a de-
cade ago in the works of Cahn' and Ebner and Saam;
the substantial progress made since has been reviewed re-
cently. Cahn' drew attention to the phenomenological
interpretation in terms of thermodynamic parameters
and the contact angle 0, of sessile drops which satisfies
(or could be defined by) the modified Young equation

rA8(8c)cos8c zAB(8c)s1118c TAw zttg

where r;~ is the interfacial free energy for an interface
between phases i and j; W denotes the wall. The second
term on the left-hand side is not usually present and is
included to allow for an angle-dependent surface tension
such as occurs in lattice models. In the simplest situa-
tion, on raising T we expect 0, to decrease, vanishing at
the wetting temperature T above which a macroscopic
film of 8 phase is intercalated between the bulk phase A
and the wall. In the case of the planar Ising model in the
binary-mixture analogy with the suitable boundary con-
ditions, the first model for which wetting was derived ex-
actly by analysis of correlation functions as well as the
free energy, the least temperature for which (1) is solved
with 0, =0 does indeed give the wetting temperature.

The relationship, noted by many authors, of the solid-
on-solid (SOS) approximation to the planar Ising model
has been reviewed and extended by Fisher. By applying
the theory of recurrent events it has been shown that
there are no macroscopic sessile drops at equilibrium.
Further, a Peierls contour analysis of the planar Ising
model with wetting boundary conditions shows that for
T«T„ there are no such drops either, a point of view
extended recently by an exact solution of a 3D system.
In view of the phenomenological picture, and indeed ele-
mentary experimental observation, this is rather perplex-
ing. We conjecture that the resolution of this problem
lies partly in the choice of ensembles; the following re-
marks illustrate this for the planar case, and we shall ob-
tain a partial resolution.

Consider an L &&L lattice with T & T, (2) so that the
ferromagnet supports two coexisting oppositely magnet-
ized pure phases in the limit as L ~. Let the bonds
pointing in from the boundary be reduced in strength
and suppose the magnetization per spin denoted by m

satisfies

m =am*+(I —a)( —m*), (2)

where 0& a & 1, m* being the spontaneous magnetiza-
tion. This is a canonical prescription with a fraction a of
plus-magnetized phase. If all the boundary spins are
fixed in value at + 1, then the phase should reside at the
boundary as a sessile drop, which satisfies the Wulff con-
struction9 and has a contact angle given by (1), in equi-
librium with a gas of microscopic droplets like that given
in the grand-canonical analysis. ' Both of these entities
should undergo wetting transitions, but perhaps not
necessarily at the same temperature, a matter to which
we shall return later. The same description should hold
if (2) has a =cL ' with 0 & 8 & 1 and c a large enough
constant, since then we have an amount of the plus phase
proportional to the perimeter but with the microscopic
droplets overcompressed to form a macroscopic sessile
one.

To date, the planar Ising model has been solved nei-
ther in a field nor a fixed magnetization. Thus the
analysis of the canonical drop shape would appear a
hopeless task. Nevertheless, in this Letter we circumvent
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FIG. 1. A strip of an Ising lattice (only part of the lattice is

shown) with reduced nearest-neighbor couplings Kl and K2. A
row of vertical bonds at the bottom are weakened to Kl & Kl
and represent the wall interactions. The boundary conditions
impose an inclined interface, which is partially pinned and
forms a contact angle 0, with the wall.
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the problem by introducing a specially restricted grand-
canonical, or zero-field, ensemble which has a —2, being
essentially canonical in a way described below.

Consider an Ising lattice with a.; j =+ 1, —M ~i
~ M, —1 &j~ L. The nearest-neighbor reduced cou-
plings are K~ and Kq for the vertical and the horizontal
directions, respectively. In addition, there is a row of
weakened bonds K~ in the bottom row to simulate an at-
tracting wall. Periodic boundary conditions are taken
for the horizontal direction. The boundary spins at the
bottom row are all up except between the 0th and the
Nth columns; similarly the top spins are all up except be-
tween the Sth and the Nth columns. We consider the
limit N ~ and concentrate on the long contour ex-
tending from i = —&, j= —l to i =S—2, j =L (see
Fig. l). It is evident in the limit of a strip of infinite
length that we have an equal admixture of the two ex-
tremal phases, that is a =

2 .

In the case where there is no attracting bonds at the
bottom, i.e., if K~ =K~, the interfacial tension of the in-
clined interface' z~s(8) for inclination tanOp=L/S has
been calculated; it satisfies

z~~(Op) =sinOp y(iv, (Op))+ v (Op)cosOp,

y'(iv, (Op) ) =i cotOp,
(3)

where y'(w)—:dy(w)/dw and y(w) is the well known
function introduced by Onsager, "

sinh2K~ cosh y(w) = cosh2K~ cosh2K2

—sinh2K2cosw . (4)

However, if K~ & K~, under appropriate conditions,
which we shall make precise below, a portion of the in-
terface will be pinned to the wall; and the interfacial free
energy for this part of the interface, z~ =zz~ —zs~, is
given by

[e '(cosh2K~ —cosh2K~) —sinh2K~ e ']
coshzp coshzgs 0

sinh2K~ (cosh2K~ —cosh2K~ )

where the free energy for a bulk interface in the horizon-
tal direction is z~s(0) =2K~+In(tanhK2). The inter-
face cannot be entirely pinned because of the boundary
condition imposed; as it turns upward, a contact angle 0,
is defined by the inclination of departure, as depicted in
Fig. 1.

The picture for the behavior of the interface described
above implies that the associated free energy is the sum
of that of the pinned portion and that of the inclined por-
tion,

!
ing the interfacial free energy and the energy-density
profile. We use the method of the transfer matrix to
compute these two objects. Let V~, Vp, and V~ denote
the row-to-row transfer matrices corresponding to K~,
Kp, and K~, respectively. In terms of the Pauli matrices
Oj', Q =X,J,Z,

V~ =exp —K~ oj
(7)

f (S—LcotO, ) zp+Lz~s(8, )/sinO, . (6) Vs=exp K2 aj"oj"+~

Comparing this with the exact calculation of the interfa-
cial free energy to be presented yields an equation for 0, .
This derivation is of course based on a picture of how the
interface behaves which needs to be justified. We shall
confirm this picture, and at the same time give another
derivation for 0, which turns out, as it should, to be iden-
tical with the one derived from free-energy considera-
tions by computing the energy-density profile. An ener-

gy density t.„=a„—~o.„ takes the value —1 only
when it is exactly at a contour. If (e„)is properly sub-
tracted so as to isolate the contribution from the long
contour, it is a very sensitive probe for the location of the
interface, for it should decay exponentially away from
the average positions of the interface in the partially wet
phase; it is far easier to calculate than the magnetization
density.

We shall derive an equation satisfied by 0, by comput-

where the dual of Kj satisfies cothKj* =exp2Kj; and V~

is the same as V~ except K&* is replaced by K
~ . Let ! + )

denote the state with all spins in a row pointing up. We
imposed the desired boundary conditions by operating
on the state ! +) with the spin-reversal operator P/
=Q/=k( —cr,'), which reverses the spins from the kth to
the jth column.

We denote the partition function for this lattice by Z,
and that of the lattice with plain boundary conditions,
i.e., all the spins at the top and bottom rows point up, by
Zo. Then

z, =(+!v, (v, v, )'!+),
z= iim (+!I'pv, (v, v, )'I'&! +).

The energy-density correlation is given in terms of the
operator e~" =cr, ~ og by

(~„,„,)= lim (+!~pV,V, (V, V, )"~ (V, V,)' "V,~, !+)/Z.
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Our result for the free energy is given by

Z I p& e
—Ly(~)+(s~

1 r ~ e
—Ly(N') Zi Z&

dw dw'
Zp 2yr ~ E(w)A (w) 2yr" — E(w')& (w') Zp Zp

E(w')

where Z(/Zp, the first integral, corresponds to the interface from ( —1, —2 ) to (L,S——,
' ) on which we focus, while

the second factor is related to the other interface infinitely far away as N ~ and does not concern us. The functions
E(w) and A(w) will be given shortly. The result for the subtracted profile (e„),=(e„)z—(e„)z, is the following:

, e e
—ny(w) —imw —L y(w') +i (S—m) w'

( ., ), = , g ) d d '

( )

8*(w) 8'(w') „,(„) B(w') . 6*(w)x 2' cos
2 2 A(w') 2

8*(w') „y(„), (11)
2

where 6'*(w) is another well known function of Onsager, ''

sinh2K ( sinh y(w) cos8'* (w) =sinh2Kq cosh2K) —cosh2K2 cosw,

and the definitions for A(w), B(w), and E(w) are

K2 8 (W) . —Kp . 8 (w)sinh2K) A(w) =(cosh2K( —cosw)e 'cos +sinwe 'sin

(i2)

(13)

S*(w) . -sc, S*(w)
sinh2K(B(w) = —(cosh2K) —cosw)e 'sin +sinwe 'cos (i4)

and

E(w) =e 'cosrc, 6*(—w)
2

If K) =Ki, A(w) =ey "E(w). Equation (13) vanishes
at w = ~ir~, giving two poles to the integrals in (10)
and (11); this produces the pinning mechanism. As the
transition temperature is approached, i.e., as T T
these poles merge with the branch points from y(w) and
S*(w) at w=+ iree(0)

By choosing S sufficiently large or K~ su%ciently
weak, or z~ ( v, (8p) to be precise, —lnZi/Zp has the

(i7)

following asymptotic behavior:

f -Ly(ir )+Sr (i6)
Comparing with (6), and using (3), this gives a contact
angle 0, satisfying

y(iv, (8,))+cot8,v, (8, ) =y(is~)+c to8, r~.
Clearly 0, is independent of L or S; hence the contact
angle is well defined.

The result above which is derived from the thermo-
dynamic considerations can be justified by investigating
the energy-density profile in (11). A similar steepest-
descent analysis gives the following exponential behavior
for the energy density:

(e „),—exp —(L —n) jy(i v, (8)) —y(i r), ) + [v, (8) —r~ ]cot 8j)

where

cot8= (S—m)/(L n), y'(iv, (8)—) =i cot8.

Assume m ~ with S as expected, but n ~ less fast
so that the pole dominates in the integral. Maximizing
the exponent of the right-hand side of (18) defines a line
along which the interface is predominantly located, and
gives an equation for 8, identical to (17). Hence we
have shown both from macroscopic and microscopic
viewpoints that the contact angle is defined by the solu-
tion of (17), r~ = v, (8, ). This solution can be shown to
be equivalent to (1). The maximal exponent in (18) is
zero, as expected. The width of the profile then diverges
as JL. When T, (2) ) T & T the mean interface is a
straight line connecting ( ——,',0) to (S——,',L), with

fluctuations as predicted in Ref. 12. Both this and the
T & T result for the mean interface are as the WulA

construction would predict with suitable boundary condi-
tions at the variational problem for free-energy minimi-
zation.

Thus the T & T„ interface has two portions which are
on average straight: one along, and bound to, the sur-
face, and the other crossing the strip at the mean slope
given by the contact-angle value. The correlation func-
tions in the portion along the surface can be shown, as
s ~, to be precisely those calculated in the original
grand-canonical wetting model, which does not display
macroscopic droplets. The wetting temperature for the
bound part of the interface, which is established through
the growth of the microscopic droplets, is exactly the
temperature at which the contact angle, as we have
defined it, vanishes.

It seems likely that the planar-Ising conjecture based
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on (2) will be confirmed for very low temperatures. '

The analogous problem for the SOS model has already
been solved' but we believe ours is the first analysis of
this problem at a molecular level. An additional bonus is
that we shall be able to analyze the rounding between
the bound part of the interface and the part which
crosses the strip.
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