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Magnetic Random-Walk Representation for Scalar QED and the Triviality Problem
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A random-walk representation for continuum scalar quantum electrodynamics in the Feynman gauge
is derived. The triviality problem of scalar QED is formulated in terms of the triviality of magnetic
random-walk interactions. The average partition function z of a pair of magnetic random walks is shown
to be equal to 1 for D ~ 4.

PACS numbers: 12.20.Ds, 03.50.—z, 05.40.+j

(1) Introduction T.—here is an interesting idea in Eu-
clidean quantum field theory (QFT), which dates back
to a famous Symanzik work in 1969, ' to reformulate
QFT models in terms of random walks or "polymer
chains. " This formulation is important from the point of
view of the analysis of triviality phenomena in QFT in
the various dimensions D. [A quantum field theory is
said to be trivial if its noncutoff limit is a (generalized)
free-field theory. The criterion of the triviality is usually
given in terms of cumulants (Ursell functions), or more
often (weaker criterion) in terms of integrated cumu-
lants ("renormalized coupling constants"). ] Actually,
the idea has been implemented in only a few (Xp -like)
cases: X,p theory itself, its simple generalizations [e.g. ,
O(N) A, p 1, and some kp -borrowed models (e.g. , the
nonlinear ct model). The rigorous lattice approach was
mainly used; although a more heuristic continuum one
is also notable. Probabilistic arguments were given to
support the conjectured triviality of X,P"-like theories for
D ) 4 (D )4). Triviality in all these models can be heu-
ristically understood through the intersection properties
of a pair of Brownian paths. "

The aim of this Letter is to extend Symanzik's idea to
another QFT model. We would like to propose the sim-
plest and physically interesting model which is by no
means related to the Xp one, namely, scalar quantum
electrodynamics (QED). As we are going to work in

the Euclidean formalism, we will impose the most con-
venient covariant Feynman gauge. Accordingly, we have
a potentially nontrivial theory, which is free of Grass-
mann objects (fermions and ghosts), and of indices
(Abelian gauge group), which might cause troubles in

probabilistic interpretation. The possible lack of Syman-
zik-Nelson positivity could also prevent any probabilistic
interpretation of the theory, but it appears that owing to
the diamagnetic inequality for regularized scalar fields,
which follows from the Kato inequality or from the Ito
integral representation, positivity can be asserted. It
should be stressed that our approach is not rigorous, and
the analysis will be performed in the continuum.

In Sec. 2, we will derive a random-walk (RW) repre-
sentation for continuum scalar QED in the Feynman
gauge for any D. Since the RW's now conduct (ficti-
tious) electric currents, according to the classical Max-
well theory of electromagnetism, one should expect mag-

& =„dx( l F„+ I V, y I
'+m'
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where F„,= |1„A,—B,A„, and V„=' |1„—ieA„(the
self-interaction, usually included for renormalization
purposes, is omitted here because it only gives rise to the
ordinary &like repulsive potential, which demands
nonintersecting magnetic RW's). The generating func-

netic fields, and possibly magnetic interactions among
them as well as with an external current density. So, un-
like the Xp case, the RW's, in general, interact via
long-range magnetic forces. In order to find the energy
of the system, one has to calculate (speaking in terms of
classical magnetostatics) the "inductances" for a system
of Brownian electric paths. The magnetic energy E for a
system of N contours is given by the well-known formu-
la

jv

E = —,
' g LklIkIt,
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where Ik are the currents, and N is the number of the
contours (in our formulation, electric charge plays the
role of electric current). Thus, the vanishing of the mu-
tual inductances of the system of RW's is related to the
triviality of scalar QED. Since we consider QED in D
dimensional space, the polymer conductors are put also
in D-dimensional space, and therefore our magnetostat-
ics is coming from classical electrodynamics in D+1 di-
mensions. As a byproduct of our analysis, we obtain a
path-integral ("first-quantized") formulation of scalar
QED (strictly speaking, a Euclidean version of it).

In Sec. 3, we will show that the average partition func-
tion z for magnetic RW's is equal to 1 for D ~ 4, and on
this base, we will argue for the vanishing of the mutual
inductances. To support our conjecture, we will use the
scaling property of Brownian paths, and some simple
renormalization-group ideas.

Section 4 concludes our analysis with a discussion de-
voted to the meaning of the average partition function z,
and to the renormalization issue.

(2) Magnetic random walk representation -Accord-. —
ing to the plan we have just sketched, first we will derive
the magnetic RW representation for the generating func-
tional of continuum scalar QED in the Feynman gauge.
The Euclidean action for scalar QED is given by
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tional has the form

Z[J,j]= DAD&*D&exp[ —S+(J,A)+(j,y)], (3)

To express (4) in probabilistic terms, we will introduce
the proper-time representation

where

(J,A): = dx J„(x)A„(x),

(j,y): = dx[j*(x)y(x) +j (x)y*(x)] .

Having imposed the Feynman-gauge condition, we get

S =J dx [——,
' A„AA„—p*(8„—ieA„) &+m p*P] . (2a)

lnD =const x — ds s ' exp( —sD)Jp

D ' =J ds exp( —sD),
and the Feynman-Kac-Ito formula

exp( —
—,
' sD)(x,y)

(s)

Integrating out the fields p* and p, we get

Z[J,j]= DA

&& exp —So —Tr lnD (A„)

+„dxdy j(x)D '(A„)(x,y)j*(y)

where

+(J,A) (4)

So =
2 gtdxA„AA„, D(A„):= —(ti„ieA„)—+m

=exp( ——,
' m s)& dW(x, y;s)(b)exp[ —V(b)], (6)

where dW(x, y;s)(b) is a conditional Wiener measure
for paths b(t): [O,s)~ R which start at x G R and
end at y E R . In our case, V(b) is given by Ito's in-

tegral

f S s
V(b) =ie J A„(b (t) )db„(t) + —,

' ie 9„A„(b(t) )dt .

Since we drop the constant factor in (5), to normalize
Z[J,j] one should replace Z[J,j] by Z '[0,0]Z[J,j],
which introduces some additional Z 0 into (8) below.
Using (5) and (6), we will expand (4) into the Taylor
series

Z[J,J] =J"DA p[ So+(J,A)] —I+ g (Wt)
N=1

p oo fO

& dzJ dss 'exp( —m s/2)J dW(z, z;s)(b)exp[ —V(b)l

+ i I dxdy j(x)j*(y)J ds exp( —m s/2)

Explicitly, (7) is given by the following expansion:

dW(x, y;s)(b)exp[ —V(b)]
J

oo

z[J,J]=z,[J] 1+ g g (w!)
N 1m 0

Here, we have introduced the following notation:

m n

Z „[Jj]= 2 " Q Q dzk dxtdytj (xt)j*(yt) G „(z~, . . . ,z,xl,y~, . . . , x„,y„;J),k-1 I-1
m+n m

G „(z1, . . . , z,x ),y 1, . . . , x„,y„;J)=„++ dsk exp( —m sk/2)si
k=1 I =1

+ rmn(z 1 ~ ~ ~ , Zm» 1 ~y 1 ~ ~ ~ ~ ~ Xn~yni& / ~ ~ ~ ~ &m+ni J) ~

m n

r „(,, . . . , , y, , . . . , „,y„, , , . . . , „;J)=Jl U UdW(, ; )(b )dW(, ,y; )(b )
k=1 l=1

&& exp[ —H +„(b(, . . . , b +„',J)],
r

N

exp[ —Hz(b~, . . . , b&,J)]=Zp [J] DA exp( —So)exp —g V(bk)+(J, A)
k=1

(10)

(12)

where Zo[J] is the generating functional for pure (free) QED. To perform the final functional integration, we will ex-
press the second exponent in (12) in the following manner:

N N ps N s—g V(bl, )+(J,A) =J dxA„(x) J„(x)—ie g J~ 8(x —bk)dbkn+ —,
' ie g J 8„6(x—bk)dt

k 1
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N

Hg(b, J) =ie g &
dx J„(x)Ak„(x),

k=1
(is)

where the electromagnetic potential Ak„(x) of the kth
Brownian conductor is

c4k~(x) =
~ 6 (x,bk )dbk~ .

H& (b) is the magnetic energy of a system of N Browni-
an conductors [compare with (1)],

N

H~ (b) = —,
' e g Lki,

k, 1 1

where the inductances Lk~ are given by the expression

Now, we can integrate out the field A„, obtaining

H~(bi, . . . , b~,J):=H~(b,J)
=H~(b, J)+H~(b)+H (b) . (14)

Here, HIv(b, J) denotes the energy of N Brownian elec-
tric conductors interacting with the external current den-
sity J„(x),

current density J„(x)=0, and hence the energy
Hz(b, J) vanishes. The polymer energy Hz(b) has been
investigated in the context of the A, p interactions, and
was argued to be trivial for D ~ 4. Thus, the possibility
of interactions in the purely scalar sector depends only
on the inductances Lki.

(3) Magnetic random walk-interactions. —Let us now
define, for magnetic RW's, the average partition func-
tion z (D&2):

z(s l,s2): = lim V ' dx dW(0;s1)(b 1)dW(x;s2)(bq)P'~ oo

r
~$1 r $2

xexp g I bi —b2i dbms„dbms„

where dW(x;s)(b) is a Wiener measure for paths
b(t): [O,s) R, which start at x E R . The partition
function z(s &,s2) should satisfy the boundary condition

lim z(sl, s2) =1,
$1,$2~ 0

r Sk &Sl
Lk( = —J „4 ' (bk, b()dbk„db(„.

And finally, H&(b) is the QED polymer energy,

(i7)
and by virtue of the Jensen inequality

z($&,sp) ) 1

We can also define the following p function:

(20)

fsk r Sl

H~(b) = —,
' e g 8(bk bI)dt dr'. —

k, l =1~ 0 4 0 P: = lim e '[z(ksl, ksq) —z(sl, s2)] =st&, ,z, (21)
0

For the purely scalar Schwinger functions, the external
where A, = I + e. According to (18)

f%$1 f X$2

z(ksi, ks2): = lim V '
I dxdW(0;Xsl)(bi)dW(x;As2)(b2) exp g i bi —b2I dbms„db2„

Using the Brownian-motion self-similarity, one can rescale the proper times sl, s2, and express (22) in the following
manner:

f Sl 1 $2
z(ksl, ks2):= lim V '„' d xd W( Os )1( bi)d W( xsq)( b)2exp gk l „ I bi —bqi dbms„db2„ (23)

Applying the Jensen inequality to (23) (for D )4), we can remove the power g =k l outside the integral, obtaining
the estimation

f$1 f $2

z(ksl, ks2) ( lim V ' „i dxd W(0s )1(bi)d W( xs )2( b)2exp g„„ I bi —b2I dbms„db2„40 dp
=z~(sl, s2) . (24)

Thus, we finally obtain

z(As|, ks2) ~ z+ e(2 —D/2)z lnz+0(e );
and our p function is estimated from above by po,

p(z) (po(z),

(2s)

(26)

where

P (z ) = (2 —D/2 )z 1nz . (27)

It is evident that Po(z) [and obviously P(z)] is non-
positive for D ~ 4. The general solution of the re-

normalization-group equation (27) is

z =exp[s1' 'y(s 1/s2)] .

Taking into account the boundary condition (19), we ob-
tian y=0, and hence z =1. Then, as it follows from
(26), z ~ 1 for the exact P function, and by virtue of
(20) z =l.

(4) Concluding remarks. —Thus, the partition func-
tion z of a pair of magnetic RW s is equal to 1, which
strongly suggests the triviality of scalar QED for D ~ 4
(at least in the scalar sector). To give more convincing
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arguments, one should note that integrated (purely sca-
lar) correlation functions (weaker criterion) consist of
z's which are equal to 1; accordingly, the renormalized
coupling constants, as they are diAerences of correlation
functions, should be equal to 0. Formally, one can use
the Holder inequalities to isolate from (11) the in-

tegrands of particular z's. [The key observation is the
following: No power can change the shape of the in-
tegrand (it can only change g), and no power can change
z (1 to any power is equal to 1).l

One can also give some heuristic explanation to this
triviality phenomenon. Namely, Brownian trajectories
are very chaotic, and therefore contributions to the mag-
netic energy coming from neighboring points cancel each
other. But for D less than 4, it need not be true because
the trajectories are no longer nonintersecting, and hence
there may be singular contributions due to the denomi-
nator in (23).

For the time being, the analysis is very qualitative as
the possible "infinite renormalization" has not yet been
taken into account. To begin with, one has to regularize
the integrals, and to replace "classical" quantities with
cutoA'-dependent bare ones. In our nonlattice approach,
the regularization can be most easily achieved in the fol-
lowing way. In the case of a scalar field, one has to
bound the lower domain of integration with respect to s
(the so-called proper-time regularization) in (5),
whereas in the case of an electromagnetic field one
should somehow regularize the Laplacian in (17). One
can observe that the whole analysis does not depend on
the integration with respect to s. Thus, the regulariza-
tion, and consequently the renormalization, in the scalar
sector cannot change the conclusion. On the other hand,
the regularization in the electromagnetic sector can
influence the shape of the interactions of the RW's in

(17). Accordingly, there is a logical possibility (though
not very likely) that removing both the scalar and elec-
tromagnetic cutouts will restore interactions.
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