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Stationary Pattern of Vortices or Strings in Biological Systems:
Lattice Version of the Lotka-Volterra Model
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By stochastic simulation, we investigate the spatial pattern in the biological system composed of three
competing species. Topological defects are introduced to explain the pattern formation in this system.
The spatial dimension d determines the nature of defects such as kinks, vortices, and strings. When
d =2,3, the system approaches the stationary state, where the peculiar defect configuration is found.

PACS numbers: 87.10.+e, 64.60.Cn

Ecological studies heretofore have been mainly aimed
at the spatial and temporal evolution of the number
(density) of individuals. In this Letter, we introduce the
concept of topological defects. The importance of topo-
logical defects is widely recognized in many diff'erent
areas. ' Since the number of topological defects is much
less than that of individuals, the pattern process of the
system is very simplified.

Many authors have considered the population dynam-
ics concerning the struggle for existence. A typical ex-
ample is the Lotka-Volterra model. We can regard this
model as the gas system composed of three competing
species (1, 2, and 3). By the collision (reaction), the
particles (individuals) change their species. When a pair
of particles of species i and j (i ~ j and i,j =1,2, 3)
react, they change into two particles of species i, if
i —j=0, 1. If i —j=2, they change into two particles of
species j. Thus, the relation of "strength" between the
species is cyclic. The number (density) of each species
in this gas system is given by

n; cr- n; (n; ~

—n( e i ),
where the dot represents the derivative with respect to
time, and n;e3=n;. Equation (1) is called the Lotka-
Volterra model whose solution gives the oscillation
profile of n; (t) depending on the initial condition.

Recently, the present author applied the Lotka-
Volterra model to a lattice system. In this system each
lattice site is occupied by one particle of three species,
and the collision of a particle is limited to take place
with the neighboring one. The simulation was performed
by asynchronous processing (random collision). The dy-
namics of the lattice Lotka-Volterra (LLV) system is en-
tirely different from the result of (1). The lattice dimen-
sion d strongly influences the dynamics. When d =1, the
number n of "domains" (regions occupied by particles of
the same species) decreases with time as n ~ t . We
have obtained a —0.8 for the initial condition nl. n2. n3
=1:1:1,and a —1.2 for 7:2:1. When d =2, the system
approaches the stationary state regardless of initial con-
ditions. The pattern of domains in the stationary state
varies greatly with time.

In this Letter, we introduce topological defects to ex-
plain the pattern formation in the LLV system. The sys-
tem is subdivided into many domains. The particle in
each domain never changes its species, unless it locates
at the boundary. For d=1 we regard the domain bound-
ary as a defect. This concept of the defect is similar to
the "kink" in the one-dimensional (1D) Ising model. '

There are two types (A and 8) for the defect. When
particles are lined up on the abscissa, the domain
boundaries move to the right (defect A) or left (defect
8). These defects react as

A+8 —y,

A+A 8,
8+8 A.

(2a)

(2b)

(2c)

a = —k(ah+a —b ),
b = —k(ab+b —a ),

(3)

where a and b are the density of defects A and 8, respec-
tively, and k is a constant (we assume k =1). By put-
ting s =a —b and n =a+b, we get (3n +s ) =Cs,
where C is a constant. This solution indicates that s
rapidly vanishes and then n decreases with time as
n cs'-t ' (a=1). Thus, MFA gives a fairly good result
concerning the value of a. However, further simulation
shows the following diAerent results compared to those
predicted from MFA: (1) The density b (or a) rapidly
decreases compared to a (b) from the early-time stage
(t ) 10), where the time t is measured by the unit of
Monte Carlo (MC) step. (2) In the latter stage (a)&b)
we find a —0.5. This can be accounted for as follows; for
a&)b, reaction (2b) becomes relevant. Since (2b) takes
place in the diA'usion-controlled limits, we obtain n —a
~ ] —0.5 7,8

When d=2, the topological defect is represented by

The number of particles 4 is generally unequal to that of
8.

It is natural first to examine the dynamics of the LLV
system in the mean-field approximation (MFA). For
(2), MFA leads to
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500 1000 1500 FIG. 2. Average rates of creation and annihilation of vor-
tices per MC step. At t=0, species are randomly distributed
(M =150x 150).

FIG. 1. Time evolution of the number N of vortices for the
square lattice (M=200&&200). At t =0, the species are distri-
buted (a) randomly, and (b) as a tricolor flag.

the "vortex" defined by the point of contact between
three different domains. Three domains rotate around
the vortex. There are two kinds of vortices (VR and VL)
distinguished by the direction of the rotation. These vor-
tices move in a complicated manner as a particle, and
are never annihilated or created except for the following
reaction:

Vtt + VL ~ p . (4)

Under the periodical boundary condition, the numbers of
Vtt and VL are always equal to each other (conservation
law). The properties of the vortices are similar to those
in the 2D superfluid. However, the rotation speed (v)
around the center of the vortex is different. In the case
of our vortex, v (r) at the distance r from the center does
not depend on r, although v ~ r ' for the vortex in
(super)IIuid. We performed the simulation of random
collision and obtained the total number of vortices N(t)
for different initial conditions; see Fig. 1, where M is the
total number of lattice sites. It is found from Fig. 1(b)
that it takes a long time to reach the stationary state for
the initial condition N(0) =0. This result suggests that
the creation rate of vortices depends upon the density of
vortices present. In Fig. 2, the number of vortices which
are created or annihilated during one MC period from
t ——,

' to t+ 2 are plotted. It is found from Fig. 2 that
the average creation rate is proportional to the total vor-
tex number N. This result is similar to photon creation
in stimulated emission. We can further confirm, from a
video visualizing the defect dynamics, that the vortices
are not equally created at every site (unequal creation).
The creation rate decreases in a region where the density
of vortex is low.

Snapshots of the vortex pattern are displayed in Fig. 3,
where (a) and (b) represent the initial and stationary

states, respectively. Although the defect pattern in the
stationary state greatly varies with time, it has invariant
features: First, there are large voids where the vortex is
empty. Second, vortices locate with negative correlation;
i.e., located around a vortex of type VR are the other
type of vortices. The appearance of voids in the station-
ary configuration is also explained by the unequal
creation.

When d=3, the dynamics is characterized by the
"vortex line (string), " which is a sequence of vortices.
Every string closes, under the periodical boundary condi-
tion. Since the species rotate around the string (loop),
each string has its own direction of rotation. The loop
grows or shrinks, and sometimes gives rise to reconnec-
tion. Thus, our strings resemble the vortex lines in
superAuid ' or the cosmic strings. "' The string in our
model has several properties that are different from other
strings: (1) Strings can be created inside the system;
(2) our string is discrete. By the latter feature, we can
easily find the elementary process of the string dynamics.

(a)

FIG. 3. Snapshot of vortex pattern for the square lattice
(M=38x38); x denotes Vg, & denotes VL. (a) initial state,
where the species are randomly distributed; (b) stationary state
(t =2oo).
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(b)
(a)

FIG. 4. Examples of the elementary process representing
the shape change of strings: (a) shrinkage; (b) reconnection.
The solid lines denote the string defects, and the arrows on the
strings indicate the direction of the rotation of the species. In
both processes, the unit strings disappear.

Whenever the loop changes its shape, the unit ring (U~)
of defect is annihilated or created for one collision step:

Here, Ug is the smallest unit ring. For the cubic lattice,
Uz denotes the square loop with a side of the lattice size.
Two examples for the annihilation process of Ug are il-
lustrated in Fig. 4, where (a) and (b) represent the
shrinkage and reconnection of strings, respectively. In
both steps, the unit rings with clockwise direction vanish.
Note that each dotted line (no defect) in Fig. 4 must be
regarded as the sum of two line defects which have in-
verse directions to each other.

The dynamics for the 30-LLV system reveals that the
total length of strings (L) approaches a unique value
(stationary state), as in Fig. I for d=2. The process
leading to the stationary state is very complicated de-
pending on initial conditions. An example is illustrated
in Fig. 5, where (a) represents the distribution of species
at i =0 (the string is therefore absent). The configura-
tions of strings are visible in Figs. 5(b), 5(c), and 5(d).
In the early-time stage (t = —,

' ) several loops (rings) are
created. The axes of the rings point in the same direc-
tion, since the creation of the rings is attributed to the
fact that the species 3 in Fig. 5(a) contacts with I

penetrating 2. The snapshot in the steady state [Fig.
5(d)] illustrates several features: (i) Large voids are
found as for d=2; (ii) the shape of the large strings is

complicatedly entangled. These are invariant features ir-
respective of initial distributions. This entanglement in
the stationary state may be explained by the unequal
creation. In the region where string density is high,
many unit rings are frequently created or annihilated. In
this situation, the string forms a complicated config-
uration.

In summary, pattern formation in the LLV system is
simplified by defect reactions. For d= 1 (2) it is re-
vealed that the total number of defects monotonically de-
creases, and at the final stage all defects vanish. On the

other hand, reaction (4) or (5) predicts the existence of a
stationary state, when the creation and annihilation of
the defects are equally balanced. The vortex number N,
and the total length of strings L, in the stationary state
becomes

N, /M —0.04, L,/M -0.06 . (6)

Stationary states can be easily confirmed by obtaining
the number of the topological defects (see Fig. I).

In the string system, we presented (5) as the elementa-
ry process of the dynamics. It is natural to conclude
from (5) that for the order parameter the number of unit
rings (NU) to construct whole stings is more appropriate
than the total length of stings (L). For example, the
value of L is unchanged for the process in Fig. 4(a), al-
though NU decreases from nine to eight unit rings. We
can easily confirm that Fig. 4(a) is the process leading to
the ordered state. The value of NU means "area" for
the loop, while L represents the "perimeter" in this
figure. Unfortunately, however, it is dificult to obtain
NU for the actual system.

The defect densities (6) in the stationary state can be
altered by a slight modification of our model. For
d =2, 3, a phase transition similar to the Kosterlitz-
Thouless type may be found. In this case, the transition
parameter (temperature in the usual physical systems)
had a biological meaning. Various types of defect dy-
namic in the LLV system will be simulated with short
computational time.

The author is indebted to Professor Y. Itoh for his
valuable advice and to J. Kimura and N. Tsuji for help
with the computer simulation.

(c)
FIG. 5. The case study of the pattern formation of strings

(16X16&&16 cubic lattice); (a) initial distribution of three
species. String configuration at (b) i = —,', (c) i= 1, and (d)
i =100 (stationary state).
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