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A systematic method is outlined for constructing workable approximations to the joint probability dis-
tribution P(y, g) of the amplitude y and spatial gradient g of an active or passive scalar field that is ad-
vected by a prescribed isotropically distributed stochastic velocity field and subjected to molecular
diff'usion. P(y, f) is sampled along fluid-element paths, and closure is obtained by taking a multi-

variate-Gaussian reference field yo(x) and distorting it locally in x space so that it exhibits the current
&(vt, g).
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The higher statistics associated with turbulence have
resisted deduction from the equations of motion. In par-
ticular, there is no systematic derivation of the intermit-
tency of small scales that is a striking feature of large-
Reynolds-number turbulence or advection of a passive
scalar at large Peclet number.

We outline here a closure method for the evolution of
P (tit, g, t ), the isotropic joint probability distribution
(PD) of scalar-field amplitude y and magnitude g of its
gradient g at a point. The analysis encompasses active
as well as passive scalar fields. Pope' has given a com-
prehensive review of past work on scalar PD's. Eswaran
and Pope present detailed simulation results for
passive-scalar statistics in isotropic turbulence. A recent
paper by Sinai and Yakhot helped to motivate our work
and point to a fruitful line of attack.

The closures are based on a technique for realizing a
scalar field y(x, t) whose multivariate distribution is ac-
cessible and imbeds a given P(y, g, t). The evolution of
P(tit, g, t) can then be followed along fiuid-element tra-

jectories. We also use extensions of methods that have
been successful in forming approximations at the mo-
ment level: least-squares realization of stochastic pro-
cesses under statistical constraints ' and the direct-
interaction approximation (DIA) and its relatives. In
the limit of strain that varies very rapidly in time, our re-
sults reproduce some asymptotic behavior obtained by
other methods. The methods are adaptable to Navier-
Stokes dynamics and to multispecies chemical reactions.

Let a zero-mean scalar field be homogeneously and
isotropically distributed in D dimensions and obey

2)y(x, t)/St =Q(tlt(x, t))+ tcV'y(x, t ) —=U(x, t), (1)

where S/X)t—= ci/cit+u(x, t) V is the substantial deriva-
tive, Q(y) = —Q( —ltr) describes a one-species chemical
reaction, tc is the molecular diffusivity, and u(x, t) is a
stochastic velocity field, independent of y(x, 0), that
obeys V. u(x, t) =0 (u =0 if D =1) and has prescribed
homogeneous and isotropic statistics. Differentiation of
(1) yields

2)&;(x,t) |)Q= —u, ;(x,t)g, (x, t)+ g;(x, t)+~V'g, (x, t) —=w, (x,t),
ay '

where g =Vtlt and ui. ; =t)uj/Bx; Simila. r equations can
be written for higher spatial derivatives.

Equations (1) and (2) present two kinds of closure
problem. First, there is the nonlinearity expressed by the
terms in Q and in u. Second, the linear terms in x cou-
ple y and g to higher-order space derivatives. The Q
terms are a challenge for moment closures but they
make no difficulty in the present PD closures, whatever
the form of Q. The rc terms offer the essential difftculty
in constructing PD closures. ' We address this problem
here by constructing vr(x, t ) as a time-dependent non-
linear mapping of a multivariate-Gaussian reference field
yo(x), in such a way as to reproduce the current
P(ttt, g, t) at each t. The mapping method is nonpertur-
bative and can represent wildly non-Gaussian Vr(x, t).
For this reason it may be of general interest in problems

v(x, t ) = [U(x, t )]c:yg+ [U(x, t )lU yg,

w(x, t) = [w(x, t)]cv~+ [w(x, t )]U~q,
(3)

~here [.]c.~~ denotes ensemble mean conditional on
given y and g values (an ordinary nonrandom function

where expansions about Gaussian statistics lead to grief.
The key feature of the mapping that makes closure possi-
ble is that the nth-order space derivatives of y are ex-
pressed in terms of nth- and lower-order space deriva-
tives of yo. The statistics of the yo derivatives are
known because yo is Gaussian. This leads to explicit ex-
pressions for V y and V g.

The quantities v(x, t) and w(x, t) may be written (cf.
Ref. 4) as

19&9 The American Physical Society 2657



VOLUME 63, NUMBER 24 PHYSICAL REVIEW LETTERS 11 DECEMBER 1989

of y and g) and the remainder [ ]U.~~ is uncorrelated
with all functions of y and g.

If g(y, g) is any function of y and g, then

BP B+ [PV(y, g, t)]+ [PW(y, g, t)] =0,+ a.
Bt By

' '
B$

where

V(y, g) =Q(y)+x[V y]c.~~,

(4)

(5)
W~(y, g) = (;+tc[V g;]c.~(+Z;,

B

By
and Z; = —[ui;(i]c ~~. The [ ]U~~ parts do contribute
indirectly by affecting the evolution of the [.]c~~ parts.

Integration of (4) over g gives

+ [P(y) V(y, t)] =0,
Bt By

where P(y) =jP(y, ()dg and

(6)

V(y) = J"P(y, s) V(y, s)ds1

P(y)
=Q(y)+x [V'y]c.

Here [.]z.~ denotes ensemble mean conditional only on

y. By use of statistical homogeneity, Eq. (6) can be re-
cast in the form '

(7)

BP(y) B+ [Q(y) P(y) l =—,[g(y) P(y)], (8)8
Bt 9y 8 lp'

where g(y) = @[( ]~.~ is the mean scalar dissipation
rate, conditional on given y. If y(x, t) is multivariate
Gaussian at some t, the joint PD of y, g, V y, and V (
at a point I is fully determined by the covariances of
these quantities. It follows from homogeneity that (yg)
=(gv y) =(yV g) =0 and that

[v'y] c:,g = —y&q'&/& y'&,

[V g]g.~g= —g((V y) )/(g ) .

The variables y and V y are statistically independent of
g and V g; [V y]U ~~ and [V g]U. ~~ are Gaussian vari-
ables independent of each other and of all the other vari-
ables named. Thus g(y) is independent of y. '

Now let yp(x) be a time-independent, multivariate-

J g(y, &)P(y, &)dydee =&g(y, ()),
where (. ) denotes average over the ensemble of realiza-
tions of y(, t) and u(, t) with y and g both measured
at the same point x. The change in (g(y, g)) during dt
induced under (1) and (2) is

dt [(v (x, t )Bg/B y) + (w; (x, t )Bg/B$; &] .

The contributions of the [ ]U ~~ parts to this expression
vanish under the averaging. It follows that the effective
fiow in (y, g) space that evolves P(y, g) depends solely
on the [ ]z.~~ parts: The continuity equation for P(y, g)
1S

&&'& =(&p2)((BX/Byo) '&,

[V2 ] =&42) — yo BX+B
(yp) Byo Byp

(i 2)

(i 3)

9A[V'y]„= [(V'y),],,+, (gp' —(go'&), (i4)
Byo Byp

g(y) = ~(go') (BXIByo)',
where the independence of yp and gp=vyp is used.
Equation (14) shows that [V y]U & ls statistically depen-
dent on y.

Equations (11)-(13)yield the final closure equation

Bt
=Q(X)+ ~&g,')—yo BX B'X

(yp2& Byo Byo'
(i6)

It is not actually necessary to solve (6) since (10) implies

P(y) =Pp(yp) [BX/Byp] (i7)
Equation (10) replaces the true multivariate distribu-

tion at each t with a tractable one obtained by local dis-
tortion of the field yp(x). In each interval dt, the evolu-
tion of this distorted field is treated exactly. Therefore
the closure is expected to exhibit the tendency of dif-
fusion to relax non-Gaussian P(y) toward Gaussian
form. ' This physics shows clearly in (16). The two x
terms describe, respectively, an outgoing wave in y space
and diffusive smoothing. The wave motion expresses the
general damping of excitation while the diffusive term
gives relaxation toward Gaussian statistics; B X/B yo
vanishes if y is Gaussian.

The relaxation has previously proved difficult to cap-
ture in closures. The underlying reason is suggested by
(8), in which the g term has the form of a negative
diffusion. The latter expresses the general shrinking of
amplitudes induced by x., but it makes (8) highly unsta-
ble in form. Physically acceptable closures must fix
g(y) so as properly to counteract this instability.

Despite its good physics, (16) is a very limited approx-
imation. It takes no account of advective stretching and,
more generally, ignores changes in (g ) not associated
with local rescaling of y via (10). External information
about second-order moments can be used, if available, to

Gaussian reference field whose one-point PD is denoted
by Pp(yp). The mapping

y=X(yp, t) [BX/Byp) 0, X(—yo, t) = —X(yp, t)]
(io)

will produce a P(y, t) that obeys (6) if

BX/Bt =V(y) =Q(y)+ tc[V y]c.~,

so that BX/Bt and V describe the same trajectory in y
space. The initial condition for (6) then is set by
X(yp, 0). Chain differentiation of (10) and use of the
Gaussian relations (9) for the reference-field distribution
yield g =gpBX/Byp and
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where BP(y, s)/Bt is given by (4) in its original form.
The mapping defined by (10) and (18) now gives the

same trajectory in (y, g) space that V and W' give if

B~(11,)/Br = V(~), BY(ll.,g. )/Br =W'(~, g) . (23)
The initial condition for (4) is then set by A'(yo, r =0)
and J(leap, go, r =0). Z; remains to be evaluated. By (10)
and (19),

Pp(leap, gp)

(BA'/Byo)(BY/B&o)
'

so that it is unnecessary to integrate (4) explicitly.
The external parameter in the present closure is

((V yo) ), instead of (go1 as in the closure based solely
on (10). As before, there are the two possibilities of
leaving this parameter fixed throughout the evolution, or
using external information to reset it at each t, via the
closure equations, so as to give correct evolution of the
suitably normalized quantity ((V y) ). If the sequence
of closures proposed in connection with (18) converges
usefully, resetting of the external parameter associated
with each closure should yield smaller and smaller
changes of that parameter with time as closure order in-
creases. The two orders of closure presented above give
some support to this hope: If g =u =0 and (go) is kept
constant in time, the closure for P(y) based on (10)
alone gives the exactly correct decay of &y ) and (g ) for
an initially Gaussian field only if the spectrum support of
y is confined to a thin shell in k space. But with
((V yo) ) kept constant, the closure based on (10) and
(18) gives the exactly correct decay of these quantities
for a Gaussian field with any self-preserving spectrum
shape.

The u term in (1) can be treated by the DIA or by re-
lated approximations to yield moment closures.
Parallel treatments of the u term can be constructed for
PD's. ' ' The DIA result for Z; in (5) involves
P(y', g', t'), a mean Green's function G(y, g, t;y', g', t')
for infinitesimal PD perturbations, and the Lagrangian
time covariance of u~;. For lack of space, we omit this
analysis and give here only the result for a Markovian
approximation in which ui; is made to vary infinitely
rapidly in time while keeping its original value for the in-
tegral of Lagrangian time covariance over difference
time. ' In this limit, G(y, g, t;y', g', t') can be replaced
by b(y —y')8(g —g') and Z; is exactly

Z; = —8 (r)S(r)&'BlnP(y, &)/B$; (D) 1) . (24)
Here S(t) =([ul i(x, t)] ), 0 (r) is the original La-
grangian correlation time of ui i, and we use u;; =0.
Ordinary second-order perturbation analysis ' ' also
yields (24).

The essential character of Z; is displayed by taking
the limit form (24) and setting Q = K =0. Then isotropy
relations reduce (4) to the diff'usive wave equation

Bp(g r) I ( ) ( ) B p(g r) Bp(g r)
Br
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where /=in((/pop) so that $B/B$ =B/B$, goo is an arbi-
trary reference value, and p(g, r) cc( JP(y, (,t)dy is
the probability density for g.

If the velocity field is statistically stationary, S is in-
dependent of time while 0 (t) is constant and O(S 'i )
for t —to))S ' . At such t, (25) yields a normal

p(g, t) with mean and variance both O(S'i t). This cor-
responds to a highly intermittent (log-normal) distribu-
tion for g and is consistent with results for rapidly
changing shear obtained by other methods. The Euleri-
an spectrum of passive y has been obtained exactly for
rapidly varying strain. '

The closure based on (10) and (18) can express dif-
ferential damping eff'ects on y due to intermittency of g.
Thereby it can describe intermittency induced in the y
distribution as a secondary effect of straining.

Both (10) and (18) satisfy constraints that are exact
consequences of homogeneity. They include '

[V @le;~g= J
' sds. (26)D ~ BP(y,s)

& w, 4
If (26) is substituted into (4), integration over g and a
partial integration with respect to g yield (8).

No closure for nonlinear terms is needed when our
method is applied to Navier-Stokes dynamics (optionally
with advected scalar); all the nonlinear terms are han-
dled like the Q terms in the analysis above. However,
the pressure terms must be approximated in terms of
single-point statistics by use of the nonlinear mappings
and by appeal to constraints based on homogeneity.
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