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Continuum Discretized Coupled-Channels Method as a Truncation of a Connected-Kernel
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The widely used continuum discretized coupled-channels (CDCC) method for approximate calcula-
tions of three-body systems is discussed as a truncation of a Faddeev formulation in angular momentum
space. A set of coupled equations is presented for converting a CDCC solution into a full solution of the
original Schrodinger equation. A practical iterative procedure for solving the equations is outlined,
based on the "distorted Faddeev equations" of Birse and Redish.
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Success of the method of continuum discretized cou-
pled channels (CDCC) in describing direct nuclear reac-
tions involving breakup of colliding nuclei has motivated
more general inquiries into its foundations as a numeri-
cal procedure for solving many-body scattering prob-
lems. When applied to a three-body system this method
solves the Schrodinger equation

[E —K —V(r) —U(rz) —U(r„)]@=0

in a restricted model space, as described at length in re-
cent reviews. ' Here the notation refers to the following
explicit, illustrative problem: A neutron n and a proton
p, with coordinates r~ and r„, move in the vicinity of an
infinitely massive nucleus A, located at the origin. The
kinetic-energy operator for the nucleons is K, the in-
teraction potential between then is V, and the interaction
potentials between A and the individual nucleons are U~
and U„. For simplicity we assume that V is a short-
ranged central potential. We also assume that incident
waves are present only in the deuteron channel. Spins
are ignored.

Recent criticisms of the CDCC method consider the
possible sensitivity of the results to the choice of model
space. ' Discussions of CDCC foundations ' em-
phasize the importance of complex optical potentials
Up U as a justification for the central approximations.
We recall in the present paper that the CDCC method
can be derived as a simple truncation of an orderly
Faddeev-type formulation. Hence the method is recog-
nized as a practical, physically motivated approximation
procedure within the general three-body theory, and this
eliminates much of the vagueness of the recent analyses
of CDCC. We go on to propose improved procedures
and new applications for this approach to three-body
analyses.

The CDCC model space is defined primarily by the

P [y„(r„)7'�(rp)l O(1/r~ ), (2)

as r~ ~. Hence p„(r„)Z~(r~) has a negligible asymp-
totic amplitude in Py. Similarly this wave function has
negligible overlap with p -A bound-state channels.

Because of the properties described above, the bound-
ary conditions for Py and Qy are expressed in terms of
the natural variables of the respective two-body channels
contained in the two components. Thus Pyr is expressed
in terms of r =r~ —r„and R =(r~+r„)/2, the variables

unusual projection operator P that only selects low angu-
lar momenta I associated with the neutron-proton rela-
tive coordinate r =r~ —r„, up to a maximum l . We will
see that the basic properties of the model-space theory
are obtained under any finite choice of l . Often the pa-
rameter l is taken to be only 0 or 2. We also define
1 —P =Q. Further properties of the model space appear
later when discretization of the P-space continuum is in-
troduced; the resulting finite number of "discretized con-
tinuum channels" comprise the standard model space.

Our principal point is that the partial wave functions
Py and Qy not only are orthogonal, but they also meet
the essential mathematical requirements for Faddeev
components. Namely, the asymptotic two-body channels
in distinct partitions of the system are located uniquely
either in component Py or in Qy, and the asymptotic
boundary conditions for each two-body channel are ex-
pressed in finite form in terms of the natural variables of
its Faddeev component. Thus, it is obvious that Qy has
no asymptotic amplitude in the deuteron channel. One
can show that Py has no asymptotic amplitudes in the
two-body rearrangement channels, which have n-A or
p-A bound states. In an n-A bound-state channel, for
example, y reduces to p„(r„)g~(rz) for rz large, where
p„ is the n Abound-state w-ave function, and gz is a pro-
ton scattering wave function. It is easy to see that
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of the deuteron channel, and Qy is expressed with r~ and

r„, the natural variables of the n-A or p-A bound-state
channels. Although the asymptotic n-A and p-A chan-
nels could be described in r, R coordinates, this would re-
quire contributions from a vast set of l states, which
would have negligible relation to the few l states in P
space. The further separation of bound p-A or n-A
channels from each other is trivial for a short-ranged
neutron-proton interaction V, as is seen below. We note
that a finite change in l does not imply any change in

the association of asymptotic two-body partitions with
the P and Q parts of the wave function.

Since the rotationally invariant V commutes with P
and Q, Eq. (l) reduces to coupled equations for the com-
ponent wave functions,

(E —K —V —PU)Py =PUQy, (3a)

and

(E —K —V —QU) Qy =QUPy . (3b)

(E —K —V —PUP) y =0. (5)

This step is based on the arguments that the coupling
term PUQy tends to be weak, especially for the smooth
potentials U~, U„ in current CDCC applications, (a) be-
cause U has small matrix elements between significantly
diA'erent 1 states, and (b) because U only links 1=1'
states in the P and Q spaces if 1=1'=1,a fairly large
angular momentum. For such values of angular momen-
ta centrifugal repulsion reduces the wave function at
small radii; in general PUQy vanishes rapidly at large
radii, giving an overall reduction. In the CDCC ap-
proach (5) is solved numerically in r, R coordinates, us-

ing discretization of the P-space continuum. This ap-
proach to the three-body system is advantageous when

Uz and U„have appreciable radii, because, once the
model space has been chosen, only the one variable R re-
quires a partial-wave expansion.

The standard Faddeev differential equations for our

Here we conveniently abbreviate U =U~+ U„. One
could conduct a Faddeev-type analysis of the system in

configuration space, using these equations, because of the
distinct asymptotic behavior of Py and Qy, and because
the coupling potentials PUQ and QUP on the right-hand
side (RHS) are three-body operators and tend to
suppress "disconnected diagrams. " It is apparent from
the same consideration as in (2) that the operator on the
left-hand side (LHS) of (3b) has the asymptotic form

(E —K —V —QU) (E —Kp —K„—Up
—U„), (4)

either for r~ ~ with r„ finite, or vice versa, so that the
p-A and n-A channels are asymptotically distinct from
each other, as claimed above. More useful coupled equa-
tions are given below.

The CDCC approximation is obtained from (3a) by
om. itting the RHS, so that

deuteron-nucleus example are

(E —K —V) yd = V(y~+ y„),
(E —K —U~) yz =Uz(yd+ y„),
(E —K —U„)y„=U„(yd + y~ ),

(6a)

(6c)

in an obvious notation. These are solved with standard
scattering boundary conditions and the constraint yd
+ y~+ y„=y. In general all three Faddeev components
contain admixtures of both the P-space and Q-space
components of the model-space approach (although the

Q component of yd is negligible if 1 is sufficiently
large). We recall that simple truncations of the stan-
dard Faddeev equations tend to lose the relations among
the three interactions in Eq. (l). In contrast the single
model-space equation (5) combines the interactions V
and P(U~+ U„)P, a considerable part of the dynamics of
the system. We note this result is based on an unsymme-
trical approach, which emphasizes particular aspects of
the interactions U~, U„.

CDCC is sometimes compared with the coupled-
reaction-channels (CRC) approach. However, we note
that CRC emphasizes coupling among the possible two-
body channels of a three-body system, largely without
three-body breakup, whereas CDCC emphasizes cou-
pling between breakup and the entrance channel, largely
without two-body exit channels.

Additional approximations used in the numerical solu-
tion of (5) have been discussed extensively. ' For ex-
ample, in the customary CDCC procedure ' Py is ex-
panded in eigenstates of K,+ V(r) and the spectrum of
these eigenstates is discretized. The R-dependent
coefficient functions in this expansion (channel func-
tions) are subject to a finite set of coupled diA'erential
equations derived from (5). The coupling potentials in
these equations, which arise from PUP in (5), are found
to have long tails and to depend somewhat on the
method of discretization. For example, the potential tail
at large R decreases as R under one method discussed
in Ref. 6 and as R under another. Although these
tails can seem troublesome, in actual CDCC calculations
the standard outgoing-wave boundary condition is im-
posed on the channel functions at a matching radius R
that is quite small. This practice ' makes sense because
the discretized PUP potential is sufficiently smooth so
that a channel function that is outgoing asymptotically
does not experience much reAection by the potential tail,
and it is still likely to be primarily outgoing at radii as
small as R —20 fm. A numerical test confirms that
CDCC results are nearly independent of the method of
discretization.

We now return to the more complete theory given by
the coupled equations (3a) and (3b) and inquire how it
diAers from the CDCC approximation. In the complete
theory the calculation of Py is aAected by the coupling
term on the RHS of (3a). The principal new eA'ects in-
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troduced by this term arise from the rearrangement
channels in Qy. However, we know that if U~ and U„
are realistic nucleon optical potentials, with absorptive
imaginary parts, the wave functions in rearrangement
channels decay exponentially both in r~ and r„; they are
"closed by absorption" and have no very-high-I com-
ponents. One expects that the only components of Qy
that are appreciable will be ones that can be reached
directly from the deuteron channel or through a few
steps of continuum-continuum coupling. Using realistic
nucleon optical potentials, the maximum angular mo-
menta reached in this way are surprisingly small, of the
order l =4. Thus the coupling term may not produce
much change of Py.

There is more scope for new eA'ects if (3a) and (3b)
are applied to systems in which U~ and U„are real.
Such systems can have open rearrangement channels, as-
sociated with nucleon-A bound states. Since the wave
function now has nonzero asymptotic amplitudes in rear-
rangement channels, Qy is not negligible under any
finite choice of model space, no matter how large. Cou-
pling to this Qy causes Py to deviate from y
More specifically, we recognize the RHS of (3a) as a
complicated long-ranged eff'ective potential in P space
that takes account of the higher-angular-momentum
states in Q space. On the other hand, despite the cou-
pling to Q space, y may still be a good approxima-
tion to Py, and hence to y, in a limited region R & R
For example, if U~ and U„are well-behaved, finite-
ranged potentials, and if l is sufficiently large, then
PUQy on the RHS of (3a) is appreciable only at very
large R. At su%ciently high energies the presence of
PUQy at these large radii causes little reflection of out-
going waves in that region back towards the inner region,
R & R, and it does not much aff'ect the wave function
in the inner region. As a corollary it is legitimate to ap-
ply the outgoing boundary condition for the channel
functions at the radius R . These arguments recover
CDCC in the region R & R; nevertheless, the existence
of Qy still implies that y divers from y in the re-
gion R & R . The full y has nonzero asymptotic ampli-
tudes in rearrangement channels, and these are missing
from &cDcc Thus when rearrangement channels are
open, any model-space derivation of y is incomplete. It
is clear from the above considerations that insensitivity
to changes of l need not mean that the dynamics are in-
sensitive to rearrangement, as Sawada-Thushima con-
cluded from their model-space calculation with real po-
tentials.

One can approach the exact solution of the complete
three-body system by regarding y = Py as a first
approximation, and taking account of the coupling to Qy
by iteration. Unfortunately, the Q operators on the LHS
of (3b) are inconvenient in rz, r„coordinates, the natural
variables for the rearrangement channels in Qy. A more
satisfactory iteration procedure is obtained from the
standard Faddeev equations (6a)-(6c), by a modifi-

cation that establishes a correspondence with the model-
space method.

Birse and Redish pointed out' that the insertion of
three-body distorting potentials, compact in all their
variables, does not change the mathematical properties
of the Faddeev equations. We now introduce the
model-space interaction PUP =P(U„+U„)P as such a
"distorting potential, " and obtain

(E —K —V —PUP) yd = V(yp+ P„),
(E —K —Up) jr' =(Ur —PUpP)yd+U~yr„,

(F. —K —U, )y„=(U PU„P )—P d + U, yp .

(7a)

(7b)

(7c)

(E —K —
U~

—U„)(y~+ y„) =(U —PUP) yd, (8)

which resembles (3b), but without Q operators on the
LHS. Thus (8) is a better starting point for iteration.
Equation (8) separates in the coordinates r~, r„ if target
nucleus recoil is unimportant. The subtraction of PUP
on the RHS of (8) considerably weakens the coupling
between y~+ j„and yd.

Since the RHS of (7a) is multiplied by the short-range
interaction V, and since QV(fr&+ yr„) = VQ(y~+ jr„)= 0 within the range of V, (7a) is to a good approxima-
tion an equation only in P space, with yd =Pyd at all R.
CDCC reappears if (7a) is truncated. Under the ap-
proximation yd ——Pyd (8) reduces to

(E —K —U„U„)(y~+y„—) = QUPyd . (8a)

The important projection operator Q in the RHS of (8a)
reduces the magnitude of the source term and displaces
it to large radii, R & R . As a result, the magnitude of
ye~+ y„extracted from this equation is reduced in the re-
gion R (R, and the RHS of (7a) is reduced. (For
R & R higher multipoles come into play, and therefore
the function y~+yr„ increases; indeed, it becomes the
source of outgoing waves in the open rearrangement
channels. ) Although the operators U~+U„on the LHS
of (8a) mix the P and Q spaces in the solution of this
equation, the Q components do not contribute to the
RHS of (7a) for a short-ranged V. Thus Eq. (8a) leads
to a small coupling term in (7a).

In an iterative approach to (7a) and (8), the CDCC
wave function can be inserted in (8) as a zero-order ap-
proximation for yd on the RHS, and (8) solved as an in-
homogeneous diA'erential equation, to produce y~+yr„.
Insertion of this approximation on the RHS of (7a) pro-
duces an improved calculation of yd, and so on. In this

The new component functions in (7a)-(7c) are defined
by these equations, together with the boundary condi-
tions and equation of constraint given for (6a)-(6c). If
(7a)-(7c) are added in the usual manner, the distort-
ing potential cancels and the original three-body
Schrodinger equation is recovered.

Addition of only (7b) and (7c) produces the useful
equation
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process, because V is short ranged one only has to worry
about the P-space part of @~+y„, as mentioned above.
The adiabatic approximation'' might be used on the
RHS of (8) as an alternative starting point for iteration.

One can imagine other ways of solving (8). For exam-
ple, since the bound states of U~ and U„have low angu-
lar momenta, it can be useful to separate y~+ y„ into ar-
rangement channels with bound n-A states and bound
p-A states, as mentioned before. To facilitate this one
can introduce additional projection operators P~ and P„
that select low angular momenta of the p-A and n-A
systems, respectively, and consider

(E —K —
Up

—Pp U„Pp] i7tp

integral-equations calculation of the two-body channels.
Not only do we place more emphasis on the three-body
continuum, we emphasize a single set of Jacobi coordi-
nates, and we use a mixed representation of the wave
function, with eigenfunctions for 1 degree of freedom
and position coordinates for the other. CDCC (and our
generalization of it) is not entirely a configuration-space
calculation.
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= (Up P„UpP„]—y„+ [Up PUt, P]—yd,

(E —K —U„P„U~P—„]i7i„

(7b')

= (U„—PpU„Pp] Itrp+ tU —PU P] ii7d, (7c')

instead of (7b) and (7c). Of course the components

yd, yz, y„are inserted in (7a) when it is used with (7b')
and (7c'). Addition of (7b') and (7c') again gives (8),
which shows that the correspondence between the P, Q
operators and yz+y„ is maintained. Another way to
solve (8) might be to expand in a truncated basis of
homogeneous eigensolutions of the LHS of the equation.

For another alternative, we note that the truncated
multipole expansion PUP of the interactions U converges
rapidly in the bounded region R & R, as l increases.
This convergence reduces the RHS of (8) or (8a), so
there is less need for iteration of the coupled equations.
It may often be practical to choose the parameter l
large enough so iteration is unnecessary.

A more detailed article is planned. An application of
these methods to the standard nD scattering problem
would be interesting. It must be noted that the above
discussion does not deal with physical complications of
U~ and U„(e.g. , energy dependence) due to suppressed
internal coordinates of nucleus A.

It has been suggested that our theory resembles that of
Osborne and Eyre, ' who apply iteration to couple the
breakup continuum of a three-body system to a coupled-
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