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High-Energy Heavy-Ion Reactions and Relativistic Hydrodynamics in Three Dimensions
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A numerical three-dimensional solution of the equations of relativistic hydrodynamics with Landau-
type initial conditions has been obtained. Using an equation of state consistent with lattice-QCD calcu-
lations, the rapidity and transverse-momentum distributions are calculated for 0+Au collisions at 200
GeV/nucleon. Satisfactory agreement with data is obtained with an initial temperature T; =220 MeV
corresponding to a mixed quark-gluon-hadron phase. A pure hadron phase is within this formalism in-
consistent with the data.

PACS numbers: 25.70.Np, 12.38.Mh, 12.40.Ee, 47.75.+f

The possibility that in high-energy hadron-hadron or
nucleus-nucleus (AA') collisions a quark-gluon plasma
(QGP) is created has resurrected the interest in the hy-
drodynamical model, because only through hydrodynam-
ics can information about the equation of state (EOS) be
obtained. In most hydrodynamical calculations per-
formed so far for AA' collisions, Bjorken scaling' was as-
sumed. Exceptions are found in Refs. 8 and 9 which
consider compressional shock waves or in Ref. 10 in
which a bag EOS is assumed and no rapidity and
transverse-momentum distributions are calculated. The
assumption of Bjorken scaling is equivalent to demand-
ing that the hydrodynamical solutions are invariant un-
der a longitudinal boost. This is based on the fact that
for high-energy pp collisions the rapidity distribution
dn/dy has a plateau in the central rapidity region. This
assumption simplifies considerably the mathematics of
the problem. However, even for pp collisions the Bjork-
en scaling is only valid in the central region and for pA
and AA' collisions it is certainly unjustified (at least for
asymmetric systems at the energies available so far) as
suggested by the fact that dn/dy has no plateau for pA
collisions. " The correct procedure is therefore to con-
sider the hydrodynamical flow in its full physical gen-
erality. The only acceptable simplification for central
collisions is the use of cylindrical (axial) symmetry. In
this paper we report on the solution of such a problem
with Landau initial conditions; ' i.e., the hydrodynamics
is used after shock waves have disappeared.

At present the handling of shock waves in the ultrare-
lativistic regime, when (partial) transparency is present,
is yet an unsolved problem. Furthermore, even if one
knew how to treat compression shocks, this would not
necessarily bring more insight, because one would have
to assume local equilibrium from the very beginning of
the reaction, which is certainly too strong an assumption.
At intermediate energies ( & IOA GeV) the situation
may be different. ' Our hydrodynamical description
starts after the formation of an initial fireball with given
geometry and thermodynamical properties.

Another point that should be emphasized is that con-
cerning the EOS. In most theoretical calculations done

Tp~ = (e+p) up up+ pgp„ (2)

is the energy-momentum tensor, u„ is the four-velocity of
the fluid, and g„, is the metric tensor. Since we are in-
terested in central collisions we can assume axial symme-
try around the beam direction. Equation (1) is then
solved for the temperature of a fluid element and its ve-

locity as a function of the space-time variables x,r, t,
where x is the coordinate along the longitudinal axis
(beam axis) and r is the radial coordinate in the trans-
verse direction. This will be called a (2+1)-dimensional
solution, to be compared with the 1+1 case where only x
and t are considered (longitudinal expansion).

In order to integrate the hydrodynamical system of
partial differential equations (PDE), one eliminates one
of the variables through the EOS which can be para-
metrized as follows:' '

II'

co(e) = a+Ptanh yln +8
&c

(1 —g)r'
ln'(e/e, )+r'

(3)
where a, P, y, 6, I, g, and e, are constants. These pa-
rameters are determined from the results of lattice QCD
and from the following asymptotic conditions: '

1 . 2 1
lim co =—and lim co = (4)T~ oo 3 T-o 3+a

in the past a constant velocity of sound co was assumed
leading to an EOS of the form p =cot, where p is the
pressure and e is the energy density of the fluid. Lattice-
QCD calculations, ' as well as general heuristic con-
siderations, on the other hand, ' suggest the existence of
a phase transition so that the velocity of sound becomes
a strong function of e. This nonlinear behavior aAects
the hydrodynamical expansion and has been considered
for the first time in Ref. 16.

In the absence of viscosity and thermal conductivity
the hydrodynamical flow is governed by the relativistic
generalization of the Euler equations

Q —g 8x 2 Bx

where
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TABLE I. List of parameters used in Eq. (3) and obtained
from Ref. 14.

tension is determined by the radius of the projectile nu-
cleus R~ and the Lorentz-contracted length of the
cylinder cut by the projectile in the target 2R'/y, . The
initial volume is thus

5
21

2
21 0.24 1.05 0.3 0.73 3.0

V, =2~(R&) 'R'/),

=exp, de', c =—
J~ co de'.

To " (I+c')e' (5)

In Figs. 1(a)-1(d) the temperature dependence and
energy-density dependence of the various quantities are
shown.

As mentioned previously we are starting our calcula-
tion at the beginning of the expansion stage, after the
formation of a locally thermalized fireball, with cylindri-
cal symmetry, at rest in the c.m. system. Its spatial ex-

where a is a parameter fixed by phenomenological stud-
ies of the resonance spectrum, ' ' with 3 ~ a ~ 4.5. In
this paper we took a =4. One possible set of parameters
consistent with the above constraints is shown in Table I.
Once the EOS is known, one can derive from thermo-
dynamics the following expressions relating the energy
density and temperature:

PP
c.m.

Ez+ n&m„

From Eq. (7) we obtain

(7)

Because of the formation time of the fireball of about 1

fm, the parameters R~ and R' can Auctuate around the
"clean cut geometry" by this distance.

For the calculation of y, =cosh(y, ), we assume
that the fireball expands symmetrically in the c.m. sys-
tem, so that the c.m. rapidity yc corresponds to the
maximum of the dn/dy distribution. From the 0+Au
data of NA35 and WA80 (Refs. 22 and 23) we get
y, =2.45. In order to check the consistency of these
estimates we calculate P, ~ for a system of sixteen pro-
jectile nucleons with an incoming energy E=3200 GeV
andH~ participant target nucleons with the mass npfpl„,
where m„ is the nucleon mass:

0.30

0.20

0.10

ooo 'l
0.30—

0.20

For y, =5.5 we get n~ =57 which is in good agreement
with the estimates obtained from data by using baryon-
number conservation. From the experimental informa-
tion on the number of secondaries produced in the final
state nI and using an inelasticity E=0.46, where
%=M/Js', with M being the fireball mass and Js' the
c.m. energy of all participants (=590 GeV), one can
calculate V; and T; as follows: We write

0.10—

ooo bl

20

nI =aSy,

where a is a slowly varying function of the temperature
and SI is the entropy in the final state. ' On the other
hand, it follows from Eqs. (1) and (2) that

t)„(su") =0, i.e., S; =S/, (10)
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FIG. 1. (a)-(d) Velocity of sound co, c, energy density, and
entropy density vs T/A The numerical values for c.((T) are
taken from Ref. 14. For the parameter A we took 1.29 & 10
GeV, which means that the phase transition occurs at a tem-
perature of 0 2 GeV.

e;V; =KJs',

s;(T;) =nge; (T; )/aM, (12)

where s; is the initial entropy density.
Equation (I ) was solved numerically by using a

finite-difference method. ' ' We define, as usual, the
freezeout time ty in a local fiuid element as the time at
which particles become free. At this moment the tem-
perature takes the value T(ty, x, r) =T~, which defines a
hypersurface a, the freezeout isotherm. On o the parti-

where S; is the initial entropy. From Eqs. (9) and (10)
and the assumption that the energy is distributed homo-
geneously in the initial fireball, one gets
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FIG. 2. Comparison of rapidity distribution of the (2+1)-
dimensional solution (dashed line) with the (1+1)-dimen-
sional one (solid line) both with constant speed of sound

cj = —, . The initial temperature in both cases is 0.38 GeV. For
the initial geometry we took R =3.1 fm and R'=1.5 fm. The
data are from Ref. 22. The shoulders in the 1+1 case are due
to the simple wave solution which contributes predominantly to
large y. In the 2+1 case the transverse expansion fills up the
gap between the shoulders.

FIG. 3. Rapidity distribution of negative particles (Ref. 22).
The contributions from kaons (dotted line), pions (dashed
line), and the sum of both (solid line) were calculated with the
(2+1)-dimensional hydrodynamical model with an EOS given

by Eq. (3). The parameters are listed in Table I. Initial condi-
tions: T; =0.22 GeV, R =3.8 fm, and R'=1.5 fm. Also rep-
resented is the distribution obtained from a (1+1)-dimen-
sional solution with an EOS given by Eq. (3) (dash-dotted
lines).

cles are distributed according to a Bose-Einstein or
Fermi-Dirac distribution

N

dp
p(m)dm2x)' "

p do'p
(

exp(p" u„/Tf) ~ I

where p„ is the momentum of the observed particles and
da" is the hypersurface element normal to o.

Particles produced with momenta p„pointing into the
interior of the emitting isotherm, i.e., regions of higher
density, are assumed to be absorbed and therefore their
contribution to the total number n is set equal to zero.
This procedure neglects the changes of entropy and ener-

gy due to absorption. However, the number of absorbed
particles is found to be small and therefore, in a first ap-
proximation, these changes should not matter. We have
checked that the results presented in this paper remained
practically the same if the absorption is not considered at
all.

The freezeout temperature Ty is a free parameter
chosen in the following to be =140 MeV. In applica-
tions we consider only pions and kaons, neglect final-
state interactions and the decay of resonances, and
correct for the fact that in the experiment no distinction
between pions and kaons is made. This last circum-
stance inAuences the meaured rapidity values and thus
the transverse-momentum (p, ) distributions which are
given in various rapidity windows.

We found that for an EOS with constant co =
3 and

for the assumption of a pure pionic gas, it is not possible
to fit simultaneously the height and the width of the ra-
pidity distribution (Fig. 2). Assuming an EOS with
variable speed of sound as described in Eq. (3) and with
parameters listed in Table I (lattice-QCD calculations
for a pure gluonic system) we can reduce the initial tem-
perature to 220 MeV (Fig. 3). From Fig. I it turns out
that this means that the fireball is initially in the mixed
phase. In Fig. 2 we also compare the rapidity distribu-

tion obtained for a 1+1 expansion with a 2+1, both
with eo = —, . The initial conditions in both calculations
are the same: T; =380 MeV, R~=3.2 fm, R'/y, =1.5
fm. It is seen that the (I+ I)-dimensional solution seri-
ously underestimates dn/dy An . increase of T; in the
I+ I solution might increase dn/dy but would bring
about a much too broad dn/dy distribution. It is difficult
to conceive that a change of parameters could change
this situation, unless very exotic values for these parame-
ters were chosen.

With T; =220 MeV, R'/y, =1.5 fm, and R~=3.8
fm we obtained a good fit to the rapidity distribution
(Fig. 3) and a satisfactory fit to the p, distribution (Fig.
4) of negative secondaries where we took into account
the kaon contribution. Preliminary calculations suggest
that an improvement of the agreement with data can be
obtained by assuming a phase transition of the first kind

co(T, ) =0 and/or by taking into account the contribu-
tions of more massive resonances like kaons to the entro-
py. Both possibilities are under investigation. In Fig. 3
we also present the results for dn/dy obtained in a
(I+1)-dimensional solution with the EOS given by Eq.
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FIG. 4. Transverse-momentum distribution of negative
secondaries (Ref. 22). The solid line is a solution of the
(2+ 1)-dimensional hydrodynamical model. Initial conditions:
T; =022 GeV, R =38 fm, and R'=1.5 fm.
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(3). It is seen that it again leads to an unacceptable dis-
tribution.

To summarize, the comparison of 1+1 and 2+1 hy-
drodynamical calculations with data assuming various
equations of state strongly suggests the need for a three-
dimensional solution with an EOS containing a phase
transition from hadronic matter to QGP. The initial
temperature of T; =220 MeV suggested by the data cor-
responds to a mixed (quark-)gluon-hadron phase and is
inconsistent with the existence of a pure hadron phase.
This also implies that a pure QGP phase has not been
reached yet at present energies and thus clean signals of
QGP might be diIIicult to see.
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