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Dynamical Mass Generation in 3D Four-Fermion Theory
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A mechanism for dynamical generation of Fermion mass in three dimensions is proposed. Spontane-
ous breaking of parity as well as certain Aavor symmetry is discussed.
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Since the seminal work of Nambu and Jona Lasinio, '

dynamical symmetry breaking has been a cornerstone of
modern elementary-particle physics. Chiral-symmetry
breaking in QCD is a well-known realization of this
phenomenon. It is also proposed as a mechanism for
electroweak-symmetry breaking alternative to the con-
ventional approach which uses elementary Higgs fields.
It has the appeal of naturalness and requires fewer ad
hoc assumptions than other approaches.

There are several field-theoretical models in which
symmetries are broken by composite order parameters.
In this Letter we study a new example of a a=3 field
theory where nonrenormalizable four-fermion operators
drive fermion mass generation for certain critical values
of their coupling constants. We shall also use a lattice
version of the theory to illustrate the symmetry-breaking
mechanism and discuss how our results could be relevant
to 2D condensed-matter systems.

In D =3, fermion mass can violate parity (P) and
time-reversal (T) symmetry: Under P, (xo,xI,xz)
= (xo, —x ~, x2), a two-component fermion transforms as
tlr(x) y~y(x') and y(x)~ —y(x')y~ and the mass
operator is odd, tlr(x) y(x) —t7l(x') y(x'). Gauge
fields also admit local and gauge-invariant but P- and
T-violating mass terms, Chem-Simons three-forms. '

Dynamical generation of either P-violating fermion or
gauge-field mass could lead to a spontaneous violation of
P and T, and generation of mass for one would lead to
mass for the other through radiative corrections.

For any pair of fermions it is possible to define a P-
and T-invariant mass operator yips —@2' where, as
well as the spacetime transformation, P and T inter-
change y& and y2. This mass term breaks a Z~ symme-
try which interchanges y~ and y2 and a global flavor
symmetry which rotates y& into y2. Dynamical P-
invariant mass generation in 3D QED with large N has
been studied using the Dyson-Schwinger gap equation
for the fermion mass. It has been found that the flavor-
symmetry-breaking pattern U (2N ) U (N ) x U (N )
occurs only when N & N, = 4. Preliminary analysis in-
dicates that electromagnetic interactions suppress P-
violating mass generation. In the following we recon-
sider P and fiavor-symmetry breaking in large-N QED
with additional four-fermion couplings.

This work has direct implications for physical systems
B=C=b 1+ ln—4 A

n'N p

4IK2N
A=b

where dynamics are confined to a plane, particularly cer-
tain 2D condensed-matter systems that can be modeled
by relativistic D=3 field theory. Examples are the P-
and T-symmetric large-N flux phases' ' of the Hub-
bard-Heisenberg model which have a continuum eAec-
tive action resembling massless spinor electrodynamics.
We shall argue that four-fermion couplings arise natu-
rally in those models. An important question arising in
their application to high-T, superconductors is whether
there is a further breaking of P and T. ' There are other
condensed-matter systems, such as the 2D graphite mod-
el, ' where the low-energy electron spectrum is relativis-
tic and our analysis would apply.

Consider N four-component fermions in a=3 Eu-
clidean space with the action '

S=„d x [Attltiy„&„y+iByyy+iCgtltzy

+(NXB /2A )y +(NtcC /2A )g 1. (1)
[Eliminating p and g with equations of motion yields
four-fermion vertices (A /2XN) (yy) and (A /2KN)
x (tirzy) .l y„are Hermitian, 4X4, and block diagonal,
y„=diag(cr„, o„); o„are Pauli matrices; and z =diag(1,
—1). A, B,C are cutoff-dependent constants. This mod-
el has U(N) XU(N) XZ& XP symmetry. The coupling
constants A,

' and tc ' have dimension [mass] ' and
the conventional perturbation expansion is nonrenormal-
izable. It has been conjectured that the 1/N expansion is
renormalizable. ' There is a recent rigorous construc-
tion where it was shown that with a bare fermion mass
the four-fermion operator is relevant at fixed points of
the couplings 1/X„l/tc, ' Furthermore, in an interest-
ing series of papers' four-fermion theories in D =3 were
argued to have phases which break Z2 and were used to
study spontaneous breaking of a continuous chiral sym-
metry. We consider (1) an effective field theory with
cutoA A and study both P and Zz breaking for which the
pseudoscalar p and the scalar g are order parameters.
The scalar two-fermion vertices and fermion propagator
are finite as A ~ if

r ' 4/3n2%
4

A =a 1 — ln-
3x'N p
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where p is an arbitrary dimensional parameter. A
change of p can always be compensated by a change in a
and b. The eA'ective potential for the classical fields p
and g at leading and next-to-leading order in I/N is

Nka q+ Nx'C

2A 2A

—N ~ Indet y p +i +ir

is finite as A ~. For fixed t, P breaks at r =(8i/
yc N) In(p/4r ) and the scalar correlation is

=constx
~
t —(8r/rc N) In(p/4r) ~'+ i

and the critical exponent is 1 +8/x N.
To couple electrodynamics to (I) we add

S, =
J [Ayy„A„y+ (N/2A e )V„„V„,] .

The photon self-energy is II„,= (p 8„,—p„p,)fI, (p)
+e„,p II, (p). With

d p+ —,
' „ lndet

(2z) '
where the last term is the sum of ring diagrams. With

+,(le+xi'+ le —zl'),N I'

where ko=2A/gr =x, . For sufficiently strong coupling
I/A. & I/A. , or I/x & I/x, and sufficiently large N, P, or
Zq is spontaneously broken. In next-to-leading order
there are logarithmic corrections. The quadratic terms
in P, g are

g 2 8 Ar=N (X-~, ) I — ln—
2 4() —t, )

—(x —rc, ) ln
8 A

4(x —rc, ) 2

+ (A, , &~ rc,g)+
where X, =x, = (2A/x ) (I —2/N). The remainder is
finite as A ~, of order

~ P ~, ~ g ~
for large P,g, and

vanishes faster than quadratic order as p,g 0. With
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(where a change in the parameter p would be compen-
sated by a change in r, t),

r=N t 1—
2
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A,g are A~c, =A =A(p, (8/A )y+ (C/A )g) +A(p, (8/A )
x y

—(C/A )g) and A =A„=A(p, (8/A )P+ (C/A)g)
—A(p, (B/A)P —(C/A)g) are components of the one-
loop scalar self-energy. In leading order in I/N

b2 ~2 g2 2rN (X —X) +N (x —x) ~

& (p m) fmf p —4(mf p
4~ I p I'

zoo(p, m )

we have

a( +g)A II, =x, p, +z, p,

8(y+g) 8(y —g)
o &o Ps +&o P

The coe%cient of the dynamically generated Chern-
Simons term in the effective action is

II.(0) =(N/4~A') [sgn(P —g)+sgn(P+Z) l .

It vanishes when ~g~ & ~p~. The electromagnetic cor-
rections to the term quadratic in P and g in I are (in a
gauge where electromagnetic fermion wave-function re-
normalization vanishes)

r 2
pA

r, = —,
'

J P, ln p', +II, (p) +II.(p)' ~

(2x) ' e'
2 2 28 e

I
16A( 2~ 2)+ e
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Here the first term derives from H, and the second from
H, . The second term resists spontaneous breaking of P.
Thus the electromagnetic interactions favor breaking Z2
instead of P, in accord with Ref. 9. The corrected criti-
cal couplings are

r

2 e 1 16A
1 ——+ —ln —1

z N 4zN & e
r

2 e2 16+
1 ——+ ln

z N 4mÃ e

so that I/k, & I/x, . This difference is significant if e is
of order A.

To obtain intuition for how Z2 and P are broken in the
four-fermion theory we consider a Hamiltonian lattice
model which produces (I) in the continuum limit. We
use N flavors of fermions on a square lattice with spacing
s and kinetic energy

1
Hf = X (Axy Yx Yy+Axy Yy Yx) ~

2s &x,y)
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where (x,y) denotes nearest neighbors and the density is
N particles per site. Equation (2) describes the eA'ective

electron dynamics in the flux phase of the large-N
[where spin SU(2) is generalized to SU(N)] mean-field
theory of the Hubbard-Heisenberg model. ' " In that
work A„y =(ytlify) is the exPectation value of the hoP-
ping amplitude and is complex. The P- and T-invariant
flux phase has h. with a constant magnitude and a phase
that gives magnetic flux n per plaquette. Here we shall
also use that background field h, and see that it yields
continuum fermions with a relativistic spectrum. We
can later couple gauge fields by making the phase of 6 a
dynamical variable and introducing kinetic and poten-
tial-energy terms. To go to the continuum limit we
divide the lattice, x=sn 11+sn 22where [1,2] are unit
basis vectors of the plane, into four sublattices where the
integers n1 and n2 are separately either even or odd, and
label the fermions

lif ~

=—lif(even, even), yq —= y(even, odd),

I/f3 —= y(odd, even ), y4 —= y(odd, odd )

We choose the background field with h, 12
=h, 21

=h, 34

643 i, 513 =642 = —1, h, 31 =h, 24
= 1. The Hamiltoni-

an is Hf =(1/s) f d k yt(k)M(k)y(k), where

0

sin(sk2)
M(k)= . (k )

sin(sk2)

—i sin(sk 1)

—i sin(sk 1 )

0

sin(sk2)

i

sin(ski�

)
sin(sk3)

0

and k is in the Brillouin zone of the even-even sublattice.
This Hamiltonian has twofold degenerate eigenvalues
sEk = ~ [sin (ski)+sin (sk2)] 'i . The branches inter-
sect at k=(0,0). With a half-filled band the effective
Hamiltonian for low-energy electrons is

O. ]k1+ Cr2k 2

Hf = d k(+g, +b)
0

~1k 1 + ~2k 2, +b,

where k 6 R, a; are Pauli matrices, and %', =(I/J2)
X (l/f/ + lif4q I/f2+ lif3) 4 $

= (1/J2) (y2 —
@3'y) —y4). This

is the D =3 Dirac Hamiltonian with N species of four-
component fermions. On the lattice there is U(N) fiavor
symmetry. The lattice doubling, ' which is responsible
for the appearance of four-component fermions, leads to
an apparent U(2N) symmetry. Discrete symmetries are
Z2 (translation by s2 and y&

—y, , y2
—y2) and p

[refiection through the line x=(s/2) I and then the Z3
transformation]. The P-even, Z3-odd mass is a local
operator on the lattice [yo =diag(a3, a3), r =diag(1,
—1)], 4'r+ =(yl yl+yjy4 —yfy2 —yfy3), and its ex-
pectation value measures the asymmetry in charge distri-
bution between the n1+n2 =even and n1+n2 =odd sub-
lattices. Z2-symmetry breaking is a formation of a site-
centered charge-density wave. A lattice operator that
produces the Euclidean four-fermion operator (I/2Nx)

&& (y ry) ' is H, = —(I/2sNx)g&, y&(lift y„—yytyy)
'

which is attractive and favors clumping of fermions N to
a site. The critical value of K arises when the attraction
is sufticiently strong to balance the tendency of the kinet-
ic term to spread charge out. This interaction is con-
tained in the attractive Hubbard interaction for spin- 2

fermions, HH„b = —Uplift y~ @~at. Appropriately gen-
eralized, SU(2) SU(N), ' '

HHub = X(Ãx Yx)
x

= ——X [(w'v. —wy'vy)'+(w'w. + my'vy)'].
(x,y)

The first term produces the P-invariant mass in the con-
tinuum limit. The second term is a nonrelativistic
charge-density-charge-density interaction. In the case
relevant to high-T, superconductors, " the Hubbard in-
teraction is repulsive and Z2 would not be broken.

On the lattice the P-odd mass is +0 =yity4+lifjyi
l/ff i/3

—yjy2 and its expectation value measures an
asymmetry in the amplitude for electron hopping diago-
nally across plaquettes between next-to-nearest neigh-
bors. The corresponding four-fermion operator can be
obtained from the lattice interaction Hamiltonian

1
x o N~

~(+ +i+z+x+Y &x+xi+i8sNX x

&x+2&x+ i ~x+ i ~x+2&

Though this operator is gauge invariant in the continuum
it is not so on the lattice and in a gauge theory it would
be necessary to introduce next-nearest-neighbor link
operators to define it correctly. It is contained (along
with other four-fermion operators) in the next-nearest-
neighbor Heisenberg antiferromagnet HAF = (J/4s )
X ZNNN 9 x 4rli x Iffy 4r Py ~

The tight-binding fermion problem on a honeycomb
lattice' also has a Lorentz-invariant continuum limit.
There, four-fermion interactions similar to H~ and H&
above would arise in a natural way. In a realistic
condensed-matter system there are other four-fermion
operators which respect the U(N) xZ2Px(with N=2)
symmetry but are not Lorentz invariant. However, as
we have seen, four-fermion operators can only be
relevant at special critical values of their coupling con-
stants. It could well be that there exists a realistic model
where the only relevant operators are those which are
Lorentz invariant in the continuum. Also, a lattice regu-
larization of the continuum relativistic field theory could
be defined in this way. We have demonstrated that four-
fermion operators can break P dynamically. This would
lead to an induced Chem-Simons term for the gauge
field and the charged particles in this theory would have
fractional spin and statistics with statistics parameter
1/2+ I/¹ This would be particularly interesting in
light of recent speculation that even a perfect gas of
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fractional-statistics particles has a superconducting
ground state. ' We believe that the P-breaking phase
that we find coincides with the chiral spin states that
have recently been suggested as candidates for high-T,
superconductor ground states. '
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