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A mechanism for dynamical generation of Fermion mass in three dimensions is proposed. Spontane-
ous breaking of parity as well as certain flavor symmetry is discussed.

PACS numbers: 11.30.Qc, 11.10.Ef

Since the seminal work of Nambu and Jona Lasinio, '
dynamical symmetry breaking has been a cornerstone of
modern elementary-particle physics.? Chiral-symmetry
breaking in QCD is a well-known realization of this
phenomenon. It is also proposed as a mechanism for
electroweak-symmetry breaking? alternative to the con-
ventional approach which uses elementary Higgs fields.
It has the appeal of naturalness and requires fewer ad
hoc assumptions than other approaches.

There are several field-theoretical models in which
symmetries are broken by composite order parameters.
In this Letter we study a new example of a D=3 field
theory where nonrenormalizable four-fermion operators
drive fermion mass generation for certain critical values
of their coupling constants. We shall also use a lattice
version of the theory to illustrate the symmetry-breaking
mechanism and discuss how our results could be relevant
to 2D condensed-matter systems.

In D=3, fermion mass can violate parity (P) and
time-reversal (7) symmetry: Under P, (x¢,x{,x3)
=(x9, —X1,X2), a two-component fermion transforms as
v(x)— 7y(x') and y(x)— —w(x')y, and the mass
operator is odd, y(x)y(x)— —y(x")y(x'). Gauge
fields also admit local and gauge-invariant but P- and
T-violating mass terms, Chern-Simons three-forms.*>
Dynamical generation of either P-violating fermion or
gauge-field mass could lead to a spontaneous violation of
P and T, and generation of mass for one would lead to
mass for the other through radiative corrections.®

For any pair of fermions it is possible to define a P-
and 7-invariant mass operator y,y; — Wy, where, as
well as the spacetime transformation, P and 7 inter-
change y; and y,. This mass term breaks a Z, symme-
try which interchanges y; and y», and a global flavor
symmetry which rotates y; into y,;. Dynamical P-
invariant mass generation in 3D QED with large NV has
been studied using the Dyson-Schwinger gap equation
for the fermion mass.” It has been found that the flavor-
symmetry-breaking pattern UQN)— UWV)xUWV)
occurs only when N < N, = 4.% Preliminary analysis in-
dicates that electromagnetic interactions suppress P-
violating mass generation.’® In the following we recon-
sider P and flavor-symmetry breaking in large-NV QED
with additional four-fermion couplings.

This work has direct implications for physical systems

where dynamics are confined to a plane, particularly cer-
tain 2D condensed-matter systems that can be modeled
by relativistic D =3 field theory. Examples are the P-
and T-symmetric large-N flux phases'®-!2 of the Hub-
bard-Heisenberg model which have a continuum effec-
tive action resembling massless spinor electrodynamics.
We shall argue that four-fermion couplings arise natu-
rally in those models. An important question arising in
their application to high-7, superconductors is whether
there is a further breaking of P and 7.!'3 There are other
condensed-matter systems, such as the 2D graphite mod-
el,'* where the low-energy electron spectrum is relativis-
tic and our analysis would apply.

Consider N four-component fermions in D=3 Eu-
clidean space with the action '

S= f d3x[Agiy,0,y+iBoyy+iCyyry

+(NAB*24%)¢*+ (NxC?/24%)x1 . (1)
[Eliminating ¢ and y with equations of motion yields
four-fermion vertices (A42%/2AN)(gy)? and (4%/2xkN)
x (Fry)2] y, are Hermitian, 4x4, and block diagonal,
v, =diag(o,,0,); o, are Pauli matrices; and = =diag(l,
—1). A,B,C are cutoff-dependent constants. This mod-
el has U(W)xU(N)xZ,xP symmetry. The coupling
constants A ~' and x ! have dimension [mass] ! and
the conventional perturbation expansion is nonrenormal-
izable. It has been conjectured that the 1//V expansion is
renormalizable.'® There is a recent rigorous construc-
tion where it was shown that with a bare fermion mass
the four-fermion operator is relevant at fixed points of
the couplings 1/Ac,1/k..!” Furthermore, in an interest-
ing series of papers'® four-fermion theories in D =3 were
argued to have phases which break Z, and were used to
study spontaneous breaking of a continuous chiral sym-
metry. We consider (1) an effective field theory with
cutoff A and study both P and Z, breaking for which the
pseudoscalar ¢ and the scalar y are order parameters.
The scalar two-fermion vertices and fermion propagator
are finite as A— oo if

4/372N
A=a|l— 42 lnL\- ~al|& ,
37N u A
4/x2N
B=C=b|1+——md|<p|A|
U u
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where p is an arbitrary dimensional parameter. A
change of u can always be compensated by a change in a
and b. The effective potential for the classical fields ¢
and y at leading and next-to-leading order in 1/N is

_ NAB? N,cc2 5
24 24

f——‘o—lndet [y,,p“+i-%)— +ir—Cl

A

A=Ay Ay

__L
f Indet —Ap K—Ay

where the last term is the sum of ring diagrams. With

A |m| _ p*+4m?
Alpm)=— — -
(p,m) r? 2n 4rp

arctan

_p
2 m|

Aab are Apy=A,, =A(p,(B/A)¢p+ (C/A)x)+A(p,(B/A)
x¢—(C/A)x) and A, =A,=A(p,(B/A)¢+(C/A)x)
—A(p,(B/A)¢p —(C/A)y) are components of the one-
loop scalar self-energy. In leading order in 1/N

F—N—(A e )-‘0—+N——(x—xc)l—

+ DL oty lo=2 I,
T a
where A2 =2A/r?=x0. For sufficiently strong coupling
1/A > 1/A, or 1/k> 1/k. and sufficiently large N, P, or
Z, is spontaneously broken. In next-to-leading order
there are logarithmic corrections. The quadratic terms
in ¢, y are

2
r=n2-
A

2

_ __ 8 A
0N kc)[l nlen 4(}»—7%)]

(e — 8 A s
(x—x.) 2Nln A=) } 5
(A"¢ K”X) s b

where A, =x.=QA/z?)(1—2/N). The remainder is
finite as A— oo, of order |¢|3, | x| for large ¢,x, and
vanishes faster than quadratic order as ¢,y — 0. With

2
A== 1+ e 2|,
B °N Hu x°’N U
2
k== i+ e B n
B TN Hu N u

(where a change in the parameter u would be compen-
sated by a change in 7,7),

2

r=Ni|t ? In | - ? fln—‘u— 9
n°N 4 niN 47 | 2

2
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is finite as A— oo, For fixed 7, P breaks at ¢t =(87/
72N)In(u/47) and the scalar correlation is

=~ constX |t — (87/n*N) In(u/47) | +¥/=*N |
and the critical exponent is 1+8/72/V.
To couple electrodynamics to (1) we add
Sem= f [47y, Ay + (N/24%2)F 1 F ) .

The photon self-energy is I, =(p 25‘” = pup I (p)
+ €u wIl, (p) With

e (p,m) 2 2 p
e P =— |m|2_L 4|n;1| arctan
N ar|p| 8z|p]l 2| m]|
ﬂo(P,m) m )4
= t
N 2zlpl "“"[zlm ’
we have
Azne=”€ P’B(¢+ ) +7['e Pa B(¢— ) ’
A A
AL =, p’B(A+ ) 4 p,B(q)A— )].

The coefficient of the dynamically generated Chern-
Simons term in the effective action is

I, (0) =(N/4rA ) [sgn(p — y) +sgn(p+x)].
It vanishes when |y| > |¢]. The electromagnetic cor-
rections to the term quadratic in ¢ and y in " are (in a

gauge where electromagnetic fermion wave-function re-
normalization vanishes)

2
- [t 4 Line| +m,p)?
f 2m)’ n{ 2 () o(p)
B2 | _ e* 16A
== |- ——(p*+y 2)+——
A? 47r3 ¢ ¢

Here the first term derives from IT, and the second from
IT1,. The second term resists spontaneous breaking of P.
Thus the electromagnetic interactions favor breaking Z,
instead of P, in accord with Ref. 9. The corrected criti-
cal couplings are

A 2 e? | 1. 16A
Ae=—|1—= 1|+ —1 —-11,
© p? N} 47t2N{7rne2 ]

A 2 e? 16A
Ke=—|1——=|+——In—
<o NJ ar’N el

so that 1/A. > 1/k.. This difference is significant if e?
of order A.

To obtain intuition for how Z, and P are broken in the
four-fermion theory we consider a Hamiltonian lattice
model which produces (1) in the continuum limit. We
use N flavors of fermions on a square lattice with spacing
s and kinetic energy

1
Hf=2— z (A:yW;V/y'*'AxyW;Wx) s 2)
S (x,p)
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where (x,y) denotes nearest neighbors and the density is
N particles per site. Equation (2) describes the effective
electron dynamics in the flux phase of the large-NV
[where spin SU(2) is generalized to SU(V)] mean-field
theory of the Hubbard-Heisenberg model.!®!! In that
work Ay, =(y/:{u/y) is the expectation value of the hop-
ping amplitude and is complex. The P- and T-invariant
flux phase has A with a constant magnitude and a phase
that gives magnetic flux 7 per plaquette. Here we shall
also use that background field A and see that it yields
continuum fermions with a relativistic spectrum. We
can later couple gauge fields by making the phase of A a
dynamical variable and introducing kinetic and poten-
tial-energy terms. To go to the continuum limit we
divide the lattice, x =sn;1+sn,2 where {1,2} are unit
basis vectors of the plane, into four sublattices where the
integers n; and n, are separately either even or odd, and
label the fermions

vi=wl(even,even) , w,=yl(even,odd),
v3=ylodd,even) , ws=y(odd,odd) .

We choose the background field with Ajp=A; =A3,
=A43=i, A;13=A43=—1, A3; =Ar3=1. The Hamiltoni-
anis Hr=(1/s) [ d* y (k)M (k)y(k), where

0 sin(sk,)  —isin(sk;) 0

sin(sk,) 0 0 isin(sk;)

MK = 6inCsk) 0 0 sin(sk2)
0 —isin(sk;) sin(sk,) 0

and k is in the Brillouin zone of the even-even sublattice.
This Hamiltonian has twofold degenerate eigenvalues
sEy = = [sin2(sk ) +sin?(sk,)]12. The branches inter-
sect at k =(0,0). With a half-filled band the effective
Hamiltonian for low-energy electrons is

5 - o1k1+ ok, 0 ¥,
Hfz fd k(\l’a,\l’b) 0 orkitok, | | ¥y

where k € R2, o; are Pauli matrices, and ¥, =(1/2)
x (g + wa, 2+ y3), ¥, =(1/3/2) (w2 — w3, w1 — ws). This
is the D =3 Dirac Hamiltonian with NV species of four-
component fermions. On the lattice there is U(V) flavor
symmetry. The lattice doubling,'® which is responsible
for the appearance of four-component fermions, leads to
an apparent U(2V) symmetry. Discrete symmetries are
Z, (translation by s2 and y,— —y1, y>— —y3) and P
[reflection through the line x =(s/2)1 and then the Z,
transformation]. The P-even, Z;-odd mass is a local
operator on the lattice [yo=diag(os,03), 7=diag(1,
— D], vov=(ylyi+yivs—viy>—wiy3), and its ex-
pectation value measures the asymmetry in charge distri-
bution between the n;+#n,=even and n;+n,=o0dd sub-
lattices. Z,-symmetry breaking is a formation of a site-
centered charge-density wave. A lattice operator that
produces the Euclidean four-fermion operator (1/2Nx)

x(gry)? is  Hy=—(1/2sN) e wlve —wlv,)?
which is attractive and favors clumping of fermions N to
a site. The critical value of x arises when the attraction
is sufficiently strong to balance the tendency of the kinet-
ic term to spread charge out. This interaction is con-
tained in the attractive Hubbard interaction for spin- +
fermions, Hyyp = — UZy/f'wfwle. Appropriately gen-
eralized, SU(2) — SU(V), "

U
HHub=_7V_'Z(WIWx)2
X

U
== & [y = vy, )+ (ulye+y v, )1
{(x,y)

The first term produces the P-invariant mass in the con-
tinuum limit. The second term is a nonrelativistic
charge-density-charge-density interaction. In the case
relevant to high-T. superconductors,!' the Hubbard in-
teraction is repulsive and Z, would not be broken.

On the lattice the P-odd mass is ¥¥ =y ys+ yly;
_VIII//:;_I[I; v, and its expectation value measures an
asymmetry in the amplitude for electron hopping diago-
nally across plaquettes between next-to-nearest neigh-
bors. The corresponding four-fermion operator can be
obtained from the lattice interaction Hamiltonian

Hz=—851—M§(wI+i+wx+wlwx+i+i

R TEL TS Rl M LA L
Though this operator is gauge invariant in the continuum
it is not so on the lattice and in a gauge theory it would
be necessary to introduce next-nearest-neighbor link
operators to define it correctly. It is contained (along
with other four-fermion operators) in the next-nearest-
neighbor Heisenberg antiferromagnet Hap=(J/4s)
X ZNNNVioys yloy,.

The tight-binding fermion problem on a honeycomb
lattice'* also has a Lorentz-invariant continuum limit.
There, four-fermion interactions similar to H, and H,
above would arise in a natural way. In a realistic
condensed-matter system there are other four-fermion
operators which respect the U(N)xZ,XxP (with N =2)
symmetry but are not Lorentz invariant. However, as
we have seen, four-fermion operators can only be
relevant at special critical values of their coupling con-
stants. It could well be that there exists a realistic model
where the only relevant operators are those which are
Lorentz invariant in the continuum. Also, a lattice regu-
larization of the continuum relativistic field theory could
be defined in this way. We have demonstrated that four-
fermion operators can break P dynamically. This would
lead to an induced Chern-Simons term for the gauge
field® and the charged particles in this theory would have
fractional spin and statistics with statistics parameter
1/2+1/N.?° This would be particularly interesting in
light of recent speculation that even a perfect gas of
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fractional-statistics particles has a superconducting
ground state.?! We believe that the P-breaking phase
that we find coincides with the chiral spin states that
have recently been suggested as candidates for high-7,
superconductor ground states. '
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