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Global Texture as the Origin of Cosmic Structure
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If a unified theory possesses non-Abelian global symmetries which are spontaneously broken, it gives
rise to a three-dimensional defect known as texture. In an expanding universe texture obeys a "scaling
solution, " which produces a constant density perturbation at horizon crossing of bp/p= mPUT/m(/anck,
where moUT is the scale of symmetry breaking. These (isocurvature) perturbations are broadly of
Harrison-Zeldovich form, but are non-Gaussian, having strong "spikes" in the density field. Conse-
quences for microwave background anisotropy are brieAy discussed.

PACS numbers: 98.80.Cq, 12.10.Dm

The idea that a symmetry-breaking phase transition in

the early Universe produced the density inhomogeneities
required to form structure in the Universe is both ap-
pealing and plausible. It has inspired a number of recent
theories of the origin of cosmic structure —cosmic
strings, ' superconducting cosmic strings, and "soft"
domain walls. The inAationary-universe scenario origi-
nally shared this motivation, but "working" models of
inAation seem to require a singlet scalar field "tacked
onto" the unified theory.

In this Letter I propose a new simple mechanism for
the generation of large-scale structure via the breaking
of a global non-Abelian continuous symmetry, at the
grand unification scale.

Despite the existence of continuous global symmetries
in the standard model there is some prejudice against
their occurring in unified models among particle physi-
cists. This is partly a result of the success of the gauge
principle, and partly due to the nonobservation of mass-
less Goldstone bosons. However, prima facie there is no
reason to believe that a fundamental theory would not
have a larger global symmetry group than the standard
model, and since the couplings of Goldstone bosons are
suppressed by inverse powers of the symmetry-breaking
scale, they could be unobservable at low energies. Bro-
ken non-Abelian continuous symmetries have been dis-
cussed in the context of horizontal symmetries where
constraints from low-energy physics imply that the
breaking scale g must be greater than 10' GeV. In
this paper I will derive a new, approximate constraint (in
the absence of inflation) that ri ( 10' GeV from the
isotropy of the microwave background.

Broken Abelian [U(1)] global symmetries lead to glo-
bal cosmic strings, which have been extensively discussed
in the literature as a possible mechanism for large-scale
structure formation. Non-Abelian global symmetries
can lead to global monopoles, as discussed by Linde and

by Barriol and Vilenkin. Generically, however, they
lead to a third type of defect, global texture. ' It is sim-
ple to construct grand-unified-theory (GUT) models
where this occurs. An SU(2) global symmetry can be
imposed on any model with two identical complex Higgs
representations. To do so constrains the masses and cou-

plings, and produces extra "accidental" ungauged degen-
eracy in the Higgs potential minimum. Conversely any
theory which predicts Higgs-boson couplings in a simple
way is likely to have such symmetries. Continuous glo-
bal symmetries can also result from the imposition of
discrete symmetries and the restriction to quartic terms
in the potential: For example, if one has two complex
fields p and g in a U(1) gauge theory, imposing the sym-
metries p~ip, g g and p (p+g)/J2, g (g—p)/J2 is enough to guarantee full global SU(2) in-
variance. The same result can be obtained by imposing a
smaller non-Abelian group, D3XZ2. Such symmetries
arise in low-energy efective theories derived from super-
string models.

Broken non-Abelian global symmetries always lead to
the formation of texture. To see this, consider the exact
sequence of homotopy groups

—rr, (H) —rr, (G)—rr, (G/H) —rr, (H)—
(1)

where H is the global low-energy symmetry group and 6
is the original global group. If we assume that the non-
Abelian symmetry is completely broken, then x3(H) and
rr2(H) are trivial. Therefore the vacuum manifold (po-
tential minimum) M=G/H has rr3(M) =rr3(G) =Z,
the integers, for any non-Abelian compact group. In the
simplest case I will discuss below, G =SU(2) and H =1,
M is a three-sphere. A generalization is to allow the un-
broken subgroup 0 to contain non-Abelian factors; in
this case it is possible to have n3 trivial. An example is
SO(5) broken to SO(4) by a vector, for which M = S .
This leads to what I shall call "nontopological texture. "
In most of this paper, however, I will discuss the simpler
case, where x3 is nontrivial.

A texture is easiest to visualize in one dimension
where M is a circle. As one travels along in space the
field may wind around M in some localized region. Un-
like other defects, in a texture the Higgs field can remain
in the vacuum manifold throughout. The energy of the
texture comes almost entirely from gradient energy in
the field. In two or three dimensions one similarly has a
localized region (which I shall call a "knot") within
which the scalar field winds around M: The field has
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trivial topology at infinity. Nevertheless to undo the
knot requires lifting the Higgs field from M.

If the symmetry is gauged, the texture becomes merely
another vacuum configuration, as the gauge field can ad-
just to "soak up" the gradient in the scalar field every-
where. To see this, write the Higgs-field configuration
N(x) =g(x)No, with No any point on M. Now choosing8„=—(i/e)r)„gg ' is enough to set D„N=0 every-
where. Since 2„is pure gauge, all field strengths and
currents vanish everywhere. An example of this occurs
in the Weinberg-Salam theory, where difTerent "texture"
sectors correspond to diferent baryon number states in
the quantum theory.

Global texture has been largely ignored so far because
it is unstable. Davis considered a simple model with
global texture, but with only a single knot in the whole
universe, stabilized by a large spatial curvature term.
However, if one is interested in generating Auctuations,
the instability is just what is needed, as I shall explain.

The instability may be understood from Derrick's
theorem. The energy of a static configuration is given
as the integral of a gradient squared term and a potential
term. If one replaces a given configuration N(x) by
&(Xx) with X ) I, shrinking it, the gradient term scales
as g while the potential term scales as k in D spa-
tial dimensions. Thus only in D =1 is a stable minimum
possible —in D & 1 any localized configuration of scalar
fields is unstable to shrinking. Note that the argument
fails for global strings or monopoles because the
configurations are not localized —the energy of a single
object diverges at infinity.

I will consider the simplest texture model, global
SU(2) broken by a complex doublet, with potential
X(& —

g ) . This is equivalent in the pure scalar sector
to a theory with a larger symmetry, SO(4), broken by a
four-vector to SO(3), as may be seen by writing & in
real components. As explained above, a texture knot
shrinks radially to a point. As long as its size is larger
than the symmetry-breaking scale m ' —k '

g
' the

field + should remain close to M throughout space, but
when the knot shrinks to of order m ' the field gra-
dients will be strong enough to pull + over the potential
barrier and unwind the knot. One is then left with a lo-
calized lump of Goldstone-boson field.

As long as the knot is large, it is a good approximation
to impose the condition + =g as a constraint on the
free-massless-field action. Doing this with a Lagrange
multiplier, one finds the equations of motion in a theory
with an ¹ omponent field N, a =1, . . . , N,

N V"6„+ (8„+)V"g C)~ = ~ (P~ = ~ (Pa (P2 = (2)

This is the equation for the O(N) nonlinear a model.
In the case where N=2, N=@(cosO, sinO), O is just a
massless Goldstone-boson field. However, for N & 2 the
components of N are coupled nonlinearly and the dy-
namics more interesting. For N=3 in D=2, (2) has sol-
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iton solutions which have the same energy for arbitrary
size, as indicated by Derrick's theorem. For N=3 in
D =3 there are global monopoles which probably become
connected by "strings" (the D=2 solitons) and disap-
pear. ' However, since M is S2 in this case, the
R3 (S2 ) =Z, as indicated by ( I ), topological texture also
forms. I shall discuss the simpler case N =4 below.

Note that while (2) is nonlinear, there is no dimen-
sional scale in the equation apart from the Hubble radius
(the background geometry scale). This means that the
dynamics of N is determined solely by the geometry of
the background and that of M with no free parameters.
The theory should therefore be very predictive.

An interesting point is that texture can actually sur-
vive a period of inAation. This is because the degree of
freedom involved in forming texture is massless, and so
the usual quantum Auctuations produced in a de Sitter
phase can drive it around the potential minimum. The
usual arguments for a massless minimally coupled field
in a de Sitter background " lead to the estimate
6@=H/2' on the scale H '. Hence for texture to be
produced one requires H = 2ng. ' For g = 10' GeV,
this requires a value of H higher than that possible in
most simple models, but the addition of an R@ term to
the scalar-field potential can reduce the eAective value of
g during inAation, and allow copious quantum produc-
tion of texture.

In a homogeneous hot-big-bang universe I expect 4 to
evolve as follows. At high temperatures it is in thermal
equilibrium, and the global symmetry is unbroken. As
the universe cools, N falls to M throughout space, but to
diA'erent points on M in diAerent correlation volumes.
Now as the universe expands and cools, knots in N
shrink and radiate away into Goldstone bosons. Phase
space clearly favors this process —at temperatures below
m the formation of new small-scale knots becomes ex-
ponentially (Boltzmann) suppressed. The shrinking of
knots correlates the N field on larger and larger scales.
This is analogous to what happens when a ferromagnet
cools. Quite quickly the correlation length should grow
to of order the horizon scale, and then keep growing with
it.

Now as still larger scales come cross the horizon, knots
will constantly form anew as N points in diA'erent direc-
tions on M in diAerent horizon volumes. The density in
a knot as it forms is just = (V+) =rl /t . The frac-
tional density perturbation on the background density pb
is = q /pt, t = (20-30)Gq, independent of time in the
matter or radiation eras. To a first approximation there
will be a scale- nvariant Harrison-Zeldovich spectrum of
density perturbations. ' This argument should also hold
in the case of nontopological texture, except that there
would be no localized knots in that case.

It is important that the dynamics of + are not simply
that of a massless field. If they were, diAerent modes
would decouple, and the correlation length remain con-
stant in comoving coordinates. The nonlinear dynamics
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of + separate out knots from the smooth background
density and lead to a real fluctuation forming.

On small scales the knots produce highly nonlinear
perturbations. As they collapse, the density at the center
quickly becomes larger than pb. If the scale of the knot
is r then the density in the core of the knot is of order

g /r . Because of initial asymmetry, the center of the
knot would, in general, be expected to move with a rela-
tivistic velocity in the latter stages of collapse. This and
the short lifetime of the "spike" would diminish the re-
sulting density perturbation on small scales.

I have evolved (2) numerically in fiat spacetime for a
spherically symmetric knot,

&'=g(sing sinocosp, singsin8sinp, singcosO, cosy), (3)

where 0 and p are the standard polar angles and g(r, t)
governs the radial profile of the knot. g(r, t) must vanish

as r at the origin and, for a localized knot, go to z at
infinity. The initial conditions used were B,g(r, O) =0,
g(r, O) =sr(1 —e "). Defining A'(r, t) =r(g —gr), van-

ishing at the origin and infinity, one obtains

4' —A" —sin(2A/r)/r =0,
which is, modulo problems at the origin, well solved by a
standard leapfrog method. I smoothed g near the origin

by approximating it as linear in r. The graphs shown

were obtained using 1000 points in r; increasing the
resolution by up to 5 times and varying the smoothing
scale similarly produced no noticeable diA'erence in the
results.

As can be seen in Fig. 1, the g configuration collapses
at the speed of light towards x everywhere. As explained
above, only when the size of the "core" becomes of order
m (i.e. , tiny) does the approximation in (2) break
down and g become free to hop over the potential barrier
and thus move away from zero at the origin. I also tried
starting configurations where g went to some other con-

stant value (e.g. , rr/2) at infinity (so that the energy den-

sity was not localized). For these too, g collapses to-
wards the chosen constant value everywhere. In the
expanding-universe context, one therefore expects "half-
knots" to occur just as often, or more often, than full
knots. The nonlinearity and resulting density perturba-
tion are, of course, smaller.

Figure 2 shows the energy density p in the scalar field
times r . p clearly diverges at the origin as the knot
shrinks, as expected.

In an expanding universe (4) is modified by a damping
term. The eA'ect of this is that a given mode only starts
oscillating on a time scale of order of its wavelength, or
when it crosses the Hubble radius. Thus at a time t
knots whose size is t should be collapsing, and the corre-
lation length should also be = t. There should be some

fraction f per volume t . Triangulating 5 with five

tetrahedra, and considering five neighboring domains
(centered at the vertices and center of a tetrahedron, for
example), the probability of a full knot existing is just
the probability that all domains correspond to diff'erent

tetrahedra on 5, from which one finds that f= —,', .
The source for the density perturbation in dark matter

is 2N . r N is plotted in Fig. 3 for the latest time —the
source clearly diverges at small r, p, tr ——5rl /r . As well

as the spike produced instantaneously as the knot col-
lapses, there is a spherical "blast wave" of outgoing
Goldstone radiation. This could well be more important
in the resulting accretion pattern, perhaps producing a
"bubblelike" overdensity pattern.

With hot dark matter, very little accretion would
occur on galaxy scales before decoupling. The gravita-
tional attraction from knots would not counter neutrino
diff'usion, and the knots would disperse. Knots could ac-
crete baryons after decoupling, and later, dark matter.
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FIG. 1. The scalar-field configuration g(r) in a collapsing
knot is shown for diff'erent times. In units where g(r)
=x(l —e ') initially, and c=1, the times shown are 0, 0.1,
0.2, and 0.31, with the value of g(r) increasing with time.
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FIG. 2. The energy density in the scalar field at the same
times. r p(r) is plotted in units of g . With increasing time,
the density collapses towards the origin. The "wiggle" at
r = 0.33 in the last configuration does not seem to be a numeri-

cal artifact, but an eA'ect of the boundary condition imposed at
the initial time propagating outwards.
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FIG. 3. The source for growth of density perturbations in
the surrounding matter, N, shown at the last time in the se-
quence. r N is plotted in units of g .

The theory obviously has more power on small scales
than the standard hot-dark-matter model, but probably
not enough to form galaxies.

With cold dark matter, on small scales which enter the
horizon in the radiation era, the theory should simply
reproduce the standard Zel'dovich spectrum. On larger
scales, spikes and blast waves should produce noticeable
eff'ects. A simple way to normalize the theory is to
demand that knots with the mean separation of Abell
clusters had enough mass to accrete them. Richness-
class-one Abell clusters have a mean separation today of
110h50' Mpc. At equal density there was about one per
volume (2RH), close to the density of knots just col-
lapsed at that time. To accrete a region with a mean
overdensity today (p/pb)p starting from equal matter-
radiation density requires an initial overdensity of
= (p/pb)o /(1+Z, q), where Z,q is 6250hso with three
light neutrinos.

The effective overdensity in Fig. 3 is M &,/(4tr/3pbr )= 100Grt (RH/r) at equal density. An Abell cluster
has an overdensity today of = 200 in a radius of 3h50'
Mpc, i.e., a region with an initial comoving radius of
3X(200)'i =18h5o' Mpc. Thus Gri =10 is needed
to produce Abell clusters. Because the perturbations are
isothermal (only affecting the photon temperature by
secondary gravitational effects), this scenario should pro-
duce very small fluctuations in the microwave back-
ground temperature. The Sachs-Wolfe eAect, for exam-
ple, is given approximately by BT/T=p/3, where p is
the potential on the last scattering surface. Using the
numbers above, on the scale of knots formed at the time,
this is given by —4trGri /3= —4X10 . The potential
actually diverges towards the center of a knot, but only
logarithmically and this would probably not be observ-
able. The pattern produced in the microwave back-
ground by a collapsing knot should, however, be quite
characteristic.

Because the probability for high overdensities in the

texture model is highly non-Gaussian, events like the
great attractor ' should occur, with a small but
significant probability, due to knots entering the horizon
late in the matter era.

As mentioned, the spherical waves emitted by collaps-
ing knots could produce overdense shells. If some clus-
ters also form at the vertices of these shells, their ob-
served r correlations might be naturally explained. '

The coincidence between the scale of the observed "bub-
bles" in the galaxy distribution [(40-60)h5o' Mpc], '

the scale of correlations of Abell clusters, and the comov-
ing Hubble radius at equal density might be neatly ex-
plained in this theory.

The background of Goldstone-boson radiation, in gen-
eral, appears quite undetectable. The Goldstone back-
ground builds up only logarithmically in the radiation
era, and at time t would be =30Gg in(t/toUr), too low
to present problems for nucleosynthesis. Today the
Goldstone radiation would be dominated by the longest
wavelengths, with total density = 20Gri (1+Z,q), a few
percent of the microwave background.
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