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Commensurability Oscillations in Magnetoplasmons of a Density-Modulated
Two-Dimensional Electron Gas
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The intra-Laudau-band magnetoplasma spectrum of a periodically density-modulated two-
dimensional electron gas is shown to exhibit unusual oscillatory behavior. Such oscillations (periodic in
1/B) are seen to arise from the commensurability of the spatial period of the modulation with the
cyclotron-orbit size at the Fermi level.

PACS numbers: 71.45.Gm, 73.20.Dx, 73.20.Mf

Chaplik anticipated that a two-dimensional electron
system under a periodic density modulation should ex-
hibit interesting magnetotransport and response proper-
ties. Not until very recently, however, has such a struc-
ture of high quality been realized with the advent of mi-
crofabrication technology. ' Magnetotransport mea-
surements performed on such systems (with the magnet-
ic field perpendicular to the 2D electron gas) by Weiss et
al. and others revealed novel magnetoresistance oscilla-
tions, similar to the Schubnikov-de Haas (SdH) oscilla-
tions, but with very diflerent periods and a much weaker
temperature dependence. It was shown that this oscilla-
tory behavior is a consequence of the commensurability
of the length scales of the system, the cyclotron radius
R, and the modulation period a, governed by the reso-
nance condition

2R, =(j+P)a, j=1,2, . . . ,

where p is a constant phase shift. The spatial density
modulation broadens the Landau levels into minibands
whose widths oscillate as functions of the magnetic field.
The electronic states are thus substantially altered, ' re-
sulting in a modulated density of states, as shown by
magnetocapacitance measurements. It is to be expected
that the observed oscillatory behavior of the magne-
toresistance is but one manifestation of the density-of-
states modulation, as the electronic density of states
governs a wide variety of dc and frequency-dependent
response and transport phenomena, as well as thermo-
dynamic properties (e.g. , electronic specific heat, mag-
netic susceptibility) of the system. One of the most im-
portant of these properties is the collective excitation
spectrum (plasmons) of the 2D electrons. We present
here our investigation of the magnetoplasmons in a
density-modulated two-dimensional electron gas
(2DEG), in conjunction with an analysis of the dynamic,
nonlocal dielectric response function, paying particular
at tention to the modulation-induced efl ects. Our
analysis shows that the magnetoplasma spectrum clearly
reflects the electronic density-of-states modulation, in the
form of oscillating magnetoplasma frequencies, satisfy-
ing the commensurability condition of Eq. (1).

We consider a 2DEG of unmodulated areal density no,
electron effective mass m, and charge —e, contained in

the x -y plane, subject to a uniform magnetic field
B =Bz. In the Landau gauge [with the vector potential
given by A =(O, Bx,0)], the unperturbed wave functions
have plane-wave structure in the y direction, and are
subject to the well-known oscillator Hamiltonian in the x
direction (ttt =c =1 here)

Hp = (1/2m )d /dx + —,
'

mco, (x —xp) (2)

where L is a normalization length in the y direction
along which the motion is free-electron-like, and
u„(x,xp) is the normalized wave function of a harmonic
oscillator centered at xo. The spatial modulation is
modeled by a sinusoidal potential in the x direction,
H' = Vpcos(2trx/a). In accordance with experimental
conditions the modulation potential may be treated as a
perturbation, with the constant Vo about an order of
magnitude smaller than the Fermi energy EF. Standard
perturbation theory yields the energy eigenvalues to first
order in H' as

E„(xp) =(n+ —,
' )co, + V„cos(2trxp/a), (3)

~here V„=Vpexp( 4'/2)L„(A), —with A'=(2tr/a) /
2mco„and L„(X) is a Laguerre polynomial. With this,
the formerly sharp Landau levels [defined by the eigen-
values of the unperturbed Hamiltonian H p, E„=(n
+ —,

' )co„degenerate with respect to ky] are now
broadened into minibands (called Landau bands hence-
forth) by the potential modulation, and the ky degenera-
cy is lifted. Furthermore, the Landau bandwidth
(—

~ V„~ ) oscillates as a function of n, since L„(A') is an
oscillatory function of its index n. These observations
have been set forth by the authors of Ref. 4 in the inter-
pretation of their magnetoresistance data. As we have
indicated above, the modulation-induced change in the
electronic density of states should also be manifested in
the dielectric response and collective excitations of the
2DEG.

The dynamic and static response properties of an elec-
tron system are all embodied in the structure of the

where co, =eB/m is the cyclotron frequency, and
xp= —ky/mco, is the coordinate of the cyclotron orbit
center. These eigenstates may be written as

P„t, (x,y) =L. ' 'e px(i key)u„( x, x)p,
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density-density correlation function. For the present case of a density-modulated 2DEG in a perpendicular magnetic
field, we have determined it in the random-phase approximation (RPA) treating the spatial modulation potential per-
turbatively, with the result

~(q, q~, ro) =~p(q, q~, ro)/[I —U(q)xp(q„, q~, co) l . (4)

Here, U(q) =2' /xq, q =(q +q~ ) '~, x is the background dielectric constant, and np(q, q~, ro) is the noninteracting
electron density-density correlation function given by

r a
zp(q, qz, ro) =(mro, /za) g C„„,(q /2m', )J dxp[f(E„(xp+xp)) —f(E„(xp))]

n, n'
x [E (xp+xp) E (xp) + ro+ i8] (5)

where f(E) is the Fermi-Dirac distribution function,
xp = —q~/mio„and

C„„(x)= (n2!/n 1!)x"' "'e "[L„",' "'(x)]',
with ni =max(n, n'), nq =min(n, n'), and L„(x) an asso-
ciated Laguerre polynomial. Equation (5) includes a
factor of 2 arising from spin degeneracy which is not
resolved in the magnetic field range (0.4-0.8 T) investi-
gated in the experiments. The Fermi energy of the
2DEG is fixed, for a given temperature and magnetic
field, by the unperturbed 2D electron density through the
relation np=(mro, /na)g„fpdxpf(E„(xp)), where the
sum over n runs through all the occupied Landau bands.

The real and imaginary parts of the density-density
correlation function as given by Eqs. (4) and (5) are the
essential ingredients for theoretical considerations of
such diverse problems as high-frequency and steady-state
transport, static and dynamic screening, and correlation
phenomena. Whereas the RPA treatment presented here
is by its nature a high-density approximation which has
been eminently successful in analyzing 3D bulk systems,

it has also enjoyed much success in the study of collec-
tive excitations in lower-dimensional systems such as pla-
nar semiconductor superlattices'

' and quantum-wire
structures, ' both with and without an applied magnetic
field. Such success has been convincingly attested by the
excellent agreement of RPA predictions of plasmon spec-
tra with experiments. ' In this connection it should be
pointed out that the exchange effect at finite wave vec-
tors ought to be considered, as indicated by Kallin and
Halperin. ' However, in our study of plasma excitations
here we shall be mainly concerned with the long-
wavelength regime, where exchange contributions are
negligible. Furthermore, in the absence of any theory of
magnetoplasmons for the case of a density-modulated
2DEG, our RPA prediction will serve as a benchmark
for more sophisticated calculations.

The plasma modes are readily furnished by the singu-
larities of the function n(q„, q~, co), namely the roots of
the longitudinal dispersion relation 1

—U(q) Rezrp(q,
q~, ro) =0. Employing Eq. (5) this becomes (P denotes
principal value integral)

QQ —l
1 = (2xe /x'q) (mao, /za) g C„„(q /2m', )P dxp[f(E„(xp+xp) ) f(E„(xp))][E„(xp+xp) —E„,(xp) +co], (6)

n, n'

along with the condition 1m'(q„, q~, ro) =0 to ensure
long-lived excitations. These normal modes originate
from two kinds of virtual electronic transitions: those in-

volving diA'erent Landau bands (inter-Landau-band
plasmons), and those within a single Landau band
(intra-Landau-band plasmons). Inter-Landau-band
plasmons encompass the local principal 2D magnetoplas-
ma mode and the Bernstein-like plasma resonances, all

of which involve excitation frequencies greater than the
Landau band separation (—ro, ). On the other hand,
intra-Landau-band plasmons resonate at frequencies
comparable with the bandwidths, and the existence of
this new class of modes is conditioned upon the introduc-
tion of finite widths to the Landau levels. The oc-
currence of such intra-Landau-band plasmons is accom-
panied by regular oscillatory behavior (in 1/8) of the
SdH type, as shown by Que and Kirczenow23 in the case
of a tunneling planar su perl at tice, where the wave-

function overlap of electrons on adjacent quantum wells

provides the broadening mechanism. Such SdH-type os-
cillations result from the emptying out of electrons from

successive Landau bands when they pass through the
Fermi level as the magnetic field is increased. The am-
plitude of the SdH oscillations is a monotonic function of
the magnetic field, when the Landau bandwidth is in-
dependent of the band index n. On the contrary, in the
present case of a density-modulated 2DEG, the Landau
bandwidths oscillate as functions of the band index n. It
is to be expected that such oscillating bandwidths should
correspondingly affect the plasmon spectrum of the
intra-Landau-band type, with the consequence that yet
another type of oscillation will be present, also periodic
in 1/8, but with a diA'erent period and smaller ampli-
tude, entirely similar to those discovered in the magne-
toresistance and capacitance measurements.

The longitudinal dispersion relation given by Eq. (6)
contains all the aforementioned plasma modes. Howev-
er, the inter-Landau-band modes and the intra-Landau-
band modes are, in general, coupled for arbitrary mag-
netic field strengths. A complete examination of Eq. (6)
for all wave vectors, frequencies, and magnetic field re-
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gimes is only feasible numericall I thy. n e present case of
weak modulation (Vo/EF((1) and considering the long-
wavelength limit, it is possible to solve Eq. (6) analyti-
call fory zero temperature. Expandin th

q mco, ) to lowest order in its argument, and the
integrand in Eq. (6) to lowest order in ! V /( —En n

„., i, the dispersion relation becomes

1 =cop po/(co' —co,')+co'/co', (7)

where co =2
p 2Q 2nnoe q/tern is the ordinary 2D plasma2

frequency and

co =(8mco, e /xxq)sin (nxo/a)

(8)

with 4„=! &F —&„)/V„!,and e(x) the Heaviside unit
step function. In obtaining Eq. (7) terms proportional to
! V, +i —V„! have been neglected since the ey are in gen-
eral much smaller than ! V ! E t (7)quation &7r yields two
normal-mode frequencies m = +]

—co, cuz 2D and m2 =6,
with corrections of order co /co dco co, an co /'Mp2D. Mi is the
well-known local 2D rip 'ncipal magnetoplasma frequenc
[Bernstein modes arare not represented because of the
commitment to low wave numb b t ders, u are escribed by
Eq. (6) at higher wave numbers] a d

'
h, an co2 is t e intra-

Landau-band plasma frequency. So long as ! V„!( co„
mixing of these modes is small. I th fn e requency regime
co, ) co —! V„!, only the intra-Landau-band mode (co)
will be excited.
(8)] we have

ed. In deriving the expression f [E .or co q.
we have employed the condition co » ! F. (x

tween the frequency and the Landau level broadenin .

co »!2V„sin(nxo/a)sin [(2'/a) (xo+xo/2)]! .

This ensures that Imx &0&q„,q~, co i vanishes identically,
and the intra-Landau-band magnetoplasmons

ampe . or a given V„, this can invariably be achieved
with a small but nonzero q~ (recall that xi'i = —q~/mco,

E .q. (8) is shown graphically in Fig. 1, as a function of
the inverse magnetic fieldeld, using parameters pertaining
to the experiments of Ref. 4 (a 2DEG at a GaAs-
A1GaAs heterojunction): m =0.07m„a.= 12. n

m, a =382 nm, and V0=1.0 rneV; also,
we take q„=0 and q~ =0.01kF, with kF =(2irno) ' be-
in the Fermi wg e ermi wave number of the unrnodulated 2DEG
in the absence of a magnetic field. The modulation-

evi ence, superposedin uced oscillations are clearly in evide, d
on t e sharp SdH-type oscillations. As expected, the
former amplitude modulation h 1as a onger period and
much reduced amplitude. Also shown in Fi . 1in ig. Inset'

e wo modes calculated exactly from E . (7), in-
cluding the coupling between the inter-Landau-band
mode and the intra-Landau-band d . In mo e. t is seen that
the former has superimposed on it the SdH oscillations,
while the latter appears with further reduced amplitude,

2.5

E

0.4 — 2—

1.5—

0.3—

0.2

2

—0.2

0.1

3 4
1/B(T')

0.1--
! 2

L, li L, l . I, , s [
3 4

0
1

1&8(T-'j
FIG. 1. Intra-Landau-band l

of the in ver
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e arrows
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q. i1, with phase shifts of p= —0.22 for the
former and p= —0.21 f
E . 7

or the latter. Inset: The two t f
q. ( ) calculated using the same par t

e wo roots o
e parameters given above.

both resulting from the coupling. The two modes are
nevertheless well resolved separat d b fie y a nite gap.

A closer analytic examination of Eq. (8) reveals the
origins of the two types of oscillations. With co, ) V
the Heavisia iside function vanishes for all but the highest

p asma frequency is simply given as co —V
The analytic structure primarily

responsible for the sharp SdH-type oscillations is the
function e(1 —6&i, which ]umps periodically from zero

~ ~

e ig est occupied Lan-when the Fermi level is above the hi h t
au band to unity (when the Fermi level is contained

within the highest occupied Landau band) w th
'

d

/ ) =e/mFF. On the other hand, the periodic

dis la ed in

modulation of the amplitude of the SdH-
isplayed in Fig. 1 is largely a consequence of the oscilla-

tory nature of the factor ! V~!', which has been shown
~ ~

to exhibit commensurability oscillations go d b E .
n view of this, it is not surprising that the period of

the amplitude modulation in Fig. 1, h(l/B) =2.07 T
is exactly the same as that predicted with E . (1) wh' h

/ ) =ea/2kp, using R, =kF/eB at the Fermi level.

cillations in th
Experimental verification of the commcommensura 1 ity os-

ci ations in the magnetoplasmon spectrum should not in

principal involve greater difticulty than that of the ma-
netoresistance anan" capacitance measurements. Typical7

a o e mag-

frequencies of these plasmons are of the order of 0.1-1
meV, which should be measurable with available experi-
mental means suchc as far-infrared spectroscopy. To
clarif the

'
y regime in which our prediction ma be

tinent to su
may e per-

to suc. experiments we discuss the sim lif in
sum tionsp s involved in our considerations. First, we have
neg ected the collisional broadening of Landau levels
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Such broadening (e.g. , by impurity scattering) is essen-
tially independent of wave vector. If it is further in-

dependent of the Landau-level index, as may be expected
for the moderately low magnetic field considered, then
the commensurability oscillations should not be afI'ected

in any fundamental way, provided, of course, that the
collisional broadening does not overwhelm the modula-
tion broadening which may be estimated as —0.5 meV.
In comparison, the collisional broadening may be es-
timated as I =(2co,/trz)'t, with z=mp/e, and p being
the low-temperature mobility at 8=0. Setting an upper
limit of collisional broadening as 0.5 meV, and taking
8 =0.8 T corresponds to a lower limit of mobility
p. =5.6x10 cm /Vs. The samples investigated in the
experiments of Refs. 4 and 7 typically have p =2.4x10
cm /Vs, which leads to a collisional broadening of 0.25
meV for the same magnetic field, a value well below that
of the modulation broadening. Second, to observe the
commensurability oscillation unambiguously the cou-
pling between the intra-Landau-band mode and the
inter-Landau-band mode must be small. Since they in-
volve diA'erent energy scales (co ) co, for the former, and
co —

i Vn i
& co, for the latter), mixing of modes can be

minimized by controlling the degree of density modula-
tion and by applying an appropriate magnetic field. It
should be possible to observe these excitations separately,
as is clear from Fig. 1, where the parameters employed
are such that

i V„ i
& 0.5 meV for Vo =1 meV, while the

magnetic field strength ranges from 0.25 to 1 T, corre-
sponding to 0.4 meV (co, (1.6 meV. Thus, except at
the low magnetic field end, the inequality i V„ i

& co, is

always satisfied. These realistic parameters, obtained
directly from experiments, ' may be used to guide an
experimental search for the intra-Landau-band magneto-
plasmons predicted here. Moreover, when substantial
mode mixing occurs, it can be accounted for within the
framework set forth here, in terms of the full dispersion
relation Eq. (6).

To summarize, we find a novel oscillatory structure in

the magnetoplasma spectrum of a two-dimensional elec-
tron gas subject to a one-dimensional density modula-
tion. As with corresponding oscillatory structure in-

volved in the magnetoresistance and capacitance of
this system, the origin lies in the interplay of the two

physical length scales of the system, i.e., the modulation
period and the cyclotron diameter at the Fermi level.
Experimental study of this new phenomenon should be as
revealing as the dc magnetoresistance measurements,
and perhaps even more rewarding since it bears directly
on the many-body properties of the 2DEG, and its

frequency-dependent transport and optical-response
properties.
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