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Mechanical Stability and Charge Densities near Stacking Faults
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The electronic structure near (111) twin stacking faults in Cu, Ir, and Al is investigated with the re-
cently developed layer Korringa-Kohn-Rostoker method. The calculated stacking-fault energies are 341
mJ/m? (Ir), 118 mJ/m? (AlD), and 58 mJ/m? (Cu), in excellent agreement with experiment. These
trends are discussed in terms of changes in local bonding and symmetry at the stacking fault.

PACS numbers: 71.10.+x, 71.25.Cx, 73.20.—r, 73.40.—c

The relationship between electronic structure and
mechanical properties of materials has received consider-
able attention, with emphasis on the development of
atomistic models of fracture and deformation. However,
quantum-mechanical modeling of mechanical behavior is
confronted by several problems, including the complex
origins of deformation processes, structural uncertainty,
and a lack of computational techniques capable of yield-
ing accurate information abut relevant structures such as
complex interfaces. Nevertheless, there are examples
where the microscopic origins of mechanical behavior
has been identified and isolated in well-characterized sys-
tems. '

Most surface and interface electronic-structure calcu-
lations? have overcome the problems associated with re-
duced symmetry by utilizing thin-film or supercell struc-
tures incorporating the region of interest. However, in
order to minimize the influence of the boundaries on in-
terface electronic properties, more atoms may be re-
quired than for a corresponding calculation of the em-
bedded structure. Alternative approaches involving
embedding® and the incorporation of more realistic
boundary conditions have been suggested by several au-
thors.

In this Letter we report a technique capable of per-
forming accurate, first-principles calculations on struc-
tures such as stacking faults and grain boundaries. The
method is based upon a layer Korringa-Kohn-Rostoker
(LKKR) approach,® which can correctly describe the
embedding of a planar defect in an otherwise perfect ma-
terial. Within the LKKR framework the infinite solid is
partitioned into layers of atoms, which are grouped into

bulk regions. This partitioning allows the interface to be
properly embedded, removing the need for slab or super-
cell boundary conditions. At present, the true crystal po-
tential is replaced by an approximate muffin-tin form,
and only the potentials in the interface layers are allowed
to relax during the calculation.

The calculation of the self-consistent electronic struc-
ture proceeds by calculating the total Green’s function G
about each atom in a layer 7 embedded in left and right
half spaces. The central quantity of interest is the local
energy-resolved charge density p(r;E), which is related
in the usual way to the diagonal components of G in the
coordinate representation, p(r;E) = — (1/7)ImG (r,r;E),
from which the total charge density is obtained by an in-
tegration to the Fermi energy. G is evaluated by invok-
ing the Dyson equation: G =Go+GoTGy, where Gy is
the free-space Green’s function and T is the scattering
operator of the solid. The operator T may be written as
T =1+ 1+ 1R, Wwhere 7/, T, and 7, sum all paths that
end with scattering events in layer 7, and the right and
left half spaces adjacent to layer I, respectively. The
obey “‘equations of motion” given in terms of the layer
scattering operator 7, and the half-space reflectivities 77
and T% of layers J— —oo and J— oo, respectively,
evaluated by application of layer-doubling and coupling
algorithms.>® For example,

TL=T£_I[1+G0T1+G01R], (1)

with appropriate cyclic permutations for 7; and zg.
These equations may be solved for the 7 in terms of the
scattering operators, T, and G expressed as

three regions: an interface region surrounded by two | G=Go+GoTiGo+Goll + T;GolR"1+GoT/1Go, (2)
where
RM=[1—T["'GoTkGol ~'T[™' 1+ (1 +GoT))GoTk"' (1 =GoT;GoTk") ~']
+[1 = TE ' GoTLGol ' TR 1+ (1 +GoT))GoTL ™' (1 —=GoT GoTi ™) 711 (3)

The first two terms in (2) represent the solution for an isolated layer and so provide the basis of a slab technique. The
last term including the effective reflectivity R T of the surrounding solid provides the embedding of a semi-infinite medi-
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um.

Within each layer the T; may be expressed in terms of
scattering-path operators 7/ which sum all intralayer
paths between atoms i and j of the layer: T, =2X,;7".
The 7" also satisfy equations of motion:

=15 +1 2 (1 =8y )Got" , 4)
k

where ¢’ is the ¢ matrix of atom i. Because of the two-
dimensional periodicity, (4) may be solved by a Fourier
transform.

A mixed basis set is used in the calculation of G, with
an expansion in spherical waves for intralayer scattering
by the muffin-tin potentials, and a plane-wave basis for
interlayer scattering. This factorization of the scattering
events facilitates a realistic treatment of complex inter-
faces, since the central-processor-unit time scales as
Y. n’, rather than as n?, where n; is the number of
unique atoms in layer i, and n, =2X; n; is the total num-
ber of unique atoms.

In practice iterative solutions for 7¢ and T% are not
uniformly convergent at real energies, near poles of the
full Green’s function. Thus, if at a specified real energy
and parallel momentum there is an allowed three-
dimensional Bloch state, then the iterative solution fails
to converge; otherwise convergence is assured. Energy
integrations are therefore performed along a contour in
the complex plane which needs only to begin and end on
the real axis to facilitate an application of the Cauchy
residue theorem. The absorption introduced by the
imaginary part of the energy means that the scattering
sums converge after a finite number of layers have been
included. In addition, since G is a smooth function at
complex energy, the Brillouin zone and energy integrals
needed for the charge-density and total-energy calcula-
tions can be accurately evaluated with only a few sam-
pling points. For the muffin-tin density of states
(MTDOS) presented below, the contour is offset 0.068
eV above the real energy axis.

The new potential is found from the calculated charge
density as the sum of a Coulomb term, found from a
solution of Poisson’s equation for the interface geo-
metry,> and an exchange-correlation contribution for
which we adopt Slater’s Xa local-density approximation
using tabulated values of a.” The procedure is then
iterated to self-consistency, which for the present calcu-
lations required approximately 10-20 iterations to
achieve the required accuracy in the total energy. These
systems were iterated with a nine-layer interface, using
/=2 as the maximum angular momentum in the in-
tralayer scattering, and thirteen plane waves for the in-
terlayer scattering. The energy and k integrations were
calculated with eight energy ordinates and six special k
points® in the irreducible part of the Brillouin zone. Rel-
ativistic effects, important only in Ir, were included using
the semirelativistic approach of Koelling and Harmon.’
The densities of states were recalculated from the self-

consistent potentials using 378 k points. These parame-
ters gave good agreement between band structures and
densities of states calculated with the LKKR code and
other published results. '

As a first application the LKKR method is used to
study twin faults in face-centered cubic (fcc) metals. An
understanding of the electronic origins of the stacking-
fault energy is crucial to the development of a general
theory of mechanical behavior. Materials with low
stacking-fault energies are characterized by planar slip
and twin formation, while those with high stacking-fault
energies are characterized by more homogeneous defor-
mation and dislocation cell formation due to easy cross
slip.!" The calculations reported below are for a twin-
stacking-fault structure constructed by altering the fcc
stacking sequence along the [111] direction to the locally
hexagonal close-packed sequence at the interface, i.e.,
from the fcc ... ABCABCABC ... to the ... ABCA-
BACBA . . . sequence.

The three metals we study are Ir, an unusual fcc ma-
terial, having a tendency to cleave as well as fail inter-
granularly and, despite a very high stacking-fault energy,
reported to exhibit deformation twinning;'? Al, a high-
stacking-fault-energy material not showing any deforma-
tion twins; and Cu, a comparatively low-stacking-fault-
energy material characterized by deformation twins un-
der shock loading. The anomalous fracture behavior of
Ir has been suggested'? to arise from the increased d
contribution to the cohesive energy in comparison with
other fcc metals as evidenced, for example, by the rela-
tively wide (6 eV) d band and relatively narrow (2 eV)
occupied part of the s band.
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FIG. 1. MTDOS for atoms near a Cu stacking fault. The
zero of energy is at the Fermi energy. Shown are the densities
of states for the stacking-fault (SF) layer, the adjacent layer,
and the bulk. Inset: The Fermi-energy densities of states.
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FIG. 2. Same as Fig. 1 for Ir.

Shown in Fig. 1 is the MTDOS for atoms near the Cu
stacking fault. The changes in the total MTDOS in-
duced by the structural perturbation are evidently small,
and found primarily within the d bands. The MTDOS
at the Fermi energy is unaffected, being dominated by s
and p contributions, which are spatially diffuse and are
therefore able to accommodate the local changes in envi-
ronment. The changes in the d band are due primarily
to changes in the hybridization and the splitting of some
of the d-band peaks resulting from the local mirror sym-
metry at the fault.

Figure 2 shows the corresponding result for Ir. The
perturbations are seen to extend throughout the band
and are clearly much larger than in Cu. In particular,
the MTDOS is enhanced by approximately 7% at the
Fermi level, which lies within the d band, where there is
a relatively small sp contribution in comparison with Cu.

In Figure 3 we present the results for the Al stacking
fault. The changes occur predominantly around the Fer-
mi energy, but are much less localized at the fault than
in Cu and Ir where the perturbations only extend three
layers away from the fault. This reflects the weaker
scattering power of the Al atoms, producing a longer
electron mean free path. The induced mirror symmetry
at the stacking fault is important in Al due to inhibited
hybridization between s and p electrons.

Many of the local changes in the MTDOS shown in
Figs. 1-3 can be explained qualitatively in terms of the
influence upon hybridization of the symmetry induced by
the fault. In Table I we show the partial-wave com-
ponents of the occupied bands along the [111] direction
in Ir, Al, and Cu and the associated parity under
reflection through a plane perpendicular to the [111]
direction, which is appropriate for the stacking-fault lay-
er. In the perfect fcc crystal both even and odd com-

2588

BULK
................ ADJACENT
03
S
©02 -
L
&
g
<
b
01

-10 -8 -6 -4 -2 0 2

Energy (eV)
FIG. 3. Same as Fig. 1 for Al

ponents can hybridize. In Cu, the A; band has a com-
paratively small p component, so the stacking fault in-
duces a much smaller perturbation than in the A; band,
where two types of d levels are split. In Al, for which
there is no occupied A3 band, the second branch of the
A band is significantly perturbed due to the inhibited sp
hybridization. Finally, for Ir, with relatively wide d
bands, the A3 band is considerably more perturbed than
in Cu.

The fault energies have been calculated by taking the
difference between total energies of the perfect crystal
and of the system with an isolated stacking fault. We
find 341 mJ/m? for Ir, 118 mJ/m? for Al, and 58 mJ/m?
for Cu. The calculated values are in good agreement
with published fault energies: Ir, 300 mJ/m%!3 Al 166
mJ/m?%!3 and Cu, 45 mJ/m2 '* 78 mJ/m2 '3 These ex-
perimental values are determined indirectly from isotro-
pic elasticity theory combined with field-ion-microscope
measurements on dislocation structure. Both elasticity
theory and microscopy give rise to errors which cannot
be corrected.!*> The calculated stacking-fault energies
also have uncertainties due to numerical errors arising
from the small value of the stacking-fault energy, from
the muffin-tin approximation, and from the lack of
structural relaxation. However, the values do reproduce

TABLE 1. The parity under reflection through a (111)
plane of the lowest partial-wave contributions to the indicated
bands along the [111] direction in an fcc material.

Parity under reflection Ay A3
Even s,d p.d
Odd p d
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the experimental trend and can be systematically im-
proved. These facts, coupled with the importance of
stacking-fault energies for an understanding of deforma-
tion behavior, point to the need for calculational tech-
niques that can determine quantities inaccessible to ex-
periment.
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