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Beyond the Two-Fluid Model: Transition from Linear Behavior to a
Velocity-Independent Force on a Moving Object in He-B
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Using a simple one-dimensional model, we show that the existence of the energy gap for excitations in

an isotropic BCS superfluid leads to a strongly nonlinear mechanical behavior of the liquid in the ballis-
tic quasiparticle limit. The nonlinear damping of a vibrating wire in He-8 below 200 pK is explained,
both in its velocity dependence and magnitude. At modest velocities (v & kT/pF), the damping force on

an object moving through the superfluid becomes independent of velocity, an unexpected result with

several interesting implications.

PACS numbers: 67.50.Fi

The quasiparticle excitations in superfluids have
dispersion curves very unlike those of simple Newtonian
objects, leading to, seemingly, nonintuitive behavior. For
example, as pointed out by Andreev, ' the fact that the
energy minimum occurs at nonzero momentum allows
the excitations to reverse their direction of motion with
virtually no change in momentum or energy. Since the
dispersion curve is distorted by superflow, a container of
superfluid with a velocity gradient will have a range of
excitation dispersion curves depending on the local veloc-
ity of the liquid (if the length scale is large enough for a

dispersion relation to be meaningful). This has a num-

ber of interesting consequences for the dynamics of the
liquid, which we discuss below in the context of
vibrating-wire resonators.

Despite the fact that much of the experimental investi-
gation of superfluid He-8 at the lowest temperatures
has been made through the medium of wire resonators,
the behavior of these devices has been a puzzle. Even at
temperatures below 0.4T„where long quasiparticle
mean free paths ensure that the motion is ballistic and
where we might expect the dynamics of the interaction
of the condensate and quasiparticle gas with a moving
wire to become very simple, the behavior is still complex.

Consider a Fermi gas of number density n and Fermi
momentum pF, interacting with a wire of radius a travel-
ing at low velocity v. From simple kinetic arguments the
damping force on the wire is given by

F =AanPFV

where 4 is a numerical constant of order unity, contain-
ing the geometrical factors of the scattering. This ap-
proach is indeed found to give a good description of the
low-temperature behavior for He- He solutions, with n

equal to the He concentration. However, in the case of
superfluid He-8 if n is set equal to the excitation densi-

ty, Eq. (1) gives a force about 3 orders of magnitude
smaller than that actually observed at the lowest tem-
peratures (T = 0.1T,). Furthermore, since the quasi-
particles exchange momentum of order pF with the wire,

while the quasiholes exchange of order —pF, then for a

symmetrical particle-hole distribution the force of Eq.
(1) should vanish identically.

In fact, at low velocities the observed force has the

magnitude F=Aap„v~v, where p„ is the normal-fluid

density and vg is the rms velocity of the quasiparticles.
These two expressions for F diff'er by a very large factor,
roughly EF(kT There h.as been much discussion of this

discrepancy.
Recently, the damping force has been found to be-

come extremely nonlinear at higher velocities, the
efrective impedance of the liquid falling with increasing
wire velocity until the pair-breaking velocity is reached.

In this paper we present a simplified one-dimensional
(1D) argument which not only explains qualitatively the
above features, but also fits the observed damping force
to high accuracy up to the pair-breaking velocity. More-
over, the model predicts that the response of the
superfluid to the motion of the wire will show several
unusual features. Most importantly at high velocity
(v)&kT/pF) the damping force on the wire should be-
come independent of velocity.

Consider a simple one-dimensional analog of a wire
resonator, shown schematically in the inset of Fig. 1.
We assume the wire to be represented by a fiat paddle of
width 2a, moving with constant velocity v in a 1D He-8
quasiparticle gas. The excitations have number density
n, and v is small compared with the excitation group ve-

locity vg. The leading side of the paddle intercepts
na(vg+v) excitations per unit time and the trailing side
na(vg —v). We may note that in a normal Fermi fluid,

particles scattered by the leading side would exchange
momentum +2pF and those scattered by the trailing
side —2pF. Hence the net force on the paddle would be
F =4anpFv, essentially the linear damping of Eq. (1).

In a superfluid the situation is more complicated. The
paddle scatters excitations so as to keep the excitation
energy constant in its own rest frame. Thus the disper-
sion relation of the quasiparticle is best considered in

that frame. The usual symmetrical dispersion curve re-
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FIG. 1. Inset: The simple model; a superleak paddle moves
at velocity v through a 1D gas of quasiparticles and quasiholes
moving with group velocity vg. Main figure: The dispersion
curve for the excitations of the simple model as viewed in the
frame of the paddle. Quasiparticles approaching the paddle
from the front (A) may be normally scattered (to C) whereas
quasiholes approaching from the front (8) cannot.

lates to the rest frame of the condensate, so we must also
consider the superfluid flow. In 3D the condensate
responds to the wire's passage by a pure potential back-
flow and thus the dispersion relation changes rapidly
with position within a distance of order a from the wire.
We can only simulate a backflow in 1D by subterfuge.
Initially, however, we consider the paddle to be a perfect
superleak, i.e., completely transparent to the condensate.
This allows the condensate to remain everywhere at rest
with respect to the distant container walls. We shall
show that this model gives a very good representation of
the behavior and the addition of a pseudobackflow only
changes the behavior in detail.

The dispersion curve for quasiparticles in the paddle
frame is shown in Fig. 1. Since normal elastic scattering
processes in this frame maintain constant energy, only a
restricted class of normal scattering processes is possible.
Quasiparticles approaching the paddle from in front are
found at A whereas quasiholes approaching from the
front are found at 8. The quasiparticles may be normal-

ly scattered to states on the other side of the Fermi sur-
face at C but the quasiholes may not, as there are no
states on the other side of the distribution for them to
scatter into. From the rearward direction only quasi-
holes may be normally scattered since now the quasipar-
ticles have no states to scatter into. The excitations
which are not allowed to scatter normally by the above
arguments are forced to undergo Andreev reflection.
However, since Andreev processes exchange momentum
of order only pFA/EF with the paddle, they may be ig-
nored in comparison with normal processes. Normal
processes exchange momentum ~2pF with the paddle.

If we further assume that any normal scattering process
will occur if it is energetically possible, then the force on
the paddle may be written as the sum of two terms, the
momentum change per unit time from quasiparticles
striking the front surface and that from quasiholes strik-
ing the rear surface, i.e. , F =napF (vg + v )+napF
&&(vg —v). The momentum change from the two terms
has the same sign since quasiparticles scattered from the
front and quasiholes scattered from the rear both retard
the paddle. The paddle velocity cancels to give
F=2napFv~. This very surprising result suggests that
the force on the paddle is independent of paddle velocity.

The above argument is appropriate to low tempera-
tures (kT«2pFv & d, ). At higher temperatures we may
assume that the incident ballistic excitations have a
thermal distribution appropriate to the stationary walls
of the vessel. In this case, not only are quasiparticles
normally rellected from the front side of the paddle (as
before), but also those quasiholes whose energy is greater
than 2pFv above the bottom of the dispersion minimum
(at D in Fig. 1). Similarly, the more energetic of the
quasiparticles incident upon the rear side are also
reflected. The force is now calculated from an integral
over the appropriate states in each branch. The density
of state per branch is g(E). We integrate the momen-
tum transfer from E =h, on the —p branches with a con-
tribution of opposite sign from E =6+2pFv on the +p
branches. The force F then becomes

W 5+ 2PFV

SpFag(E)exp( E/kT) vs dE .— (2)

In one dimension g(E) =(2/h)Bp/BE. Since the group
velocity is BE/Bp, a convenient cancellation occurs, giv-
ing

f ~+ 2pFV
F = —

J (16apF/h )exp( —E/kT)dE . (3)

This yields

F =(16apFkT/h)exp( —6/kT) [I —exp( —2pFv/kT)] .

(4)
This force as a function of velocity is plotted in Fig. 2.

At low velocities (pFv «kT) the force is proportional to
velocity, F= (32apF/h )exp( A/k T) v, but, as alr—eady
seen above, the force becomes independent of velocity at
high velocity, with value F=(16apFkT/h)exp( —4/kT).

How can we modify these simple arguments to take
into account a solid paddle with a backflow of super-
fluid? Near a "real" paddle the condensate is moving
with the same velocity as the paddle (normal to the sur-
face), whereas at a distance the condensate is at rest
with respect to the walls. Such a velocity distribution is
not possible in a purely 1D system but for present pur-
poses we may consider the liquid to flow around the pad-
dle in some further dimension perpendicular to the
motion, which we (conveniently) ignore. The dispersion
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FIG. 2. The force of expression (4) plotted as a function of
paddle velocity.
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FIG. 3. The 1D model with backAow: liquid near the pad-
dle travels at the paddle velocity; far liquid is at rest. The ap-
propriate dispersion curves in the frame of the paddle are
shown. Quasiparticles (at A) can reach the paddle from the
front side but quasiholes (8) cannot.

the same as (4) except for the loss of a factor of 2 in the
final exponential term.

We may reexpress this force in terms of the two-fluid
model. Both the normal-fluid density and the group ve-
locity involve integrals over the density of states and are
usually expressed in terms of the appropriate Yosida
functions. However, the product p„ i vg i for each excita-
tion, integrated over the whole distribution, (p„vs), shows
the same cancellation we noted above in arriving at Eq.
(3) and we readily find for 1D, (p„us) = (8pF/h )
xexp( A/kT) Hence—the low.-velocity value of F from
Eq. (5) may be rewritten F=2a(p„vs)v, which is essen-
tially the long-known, but hitherto unjustified, experi-
mental result.

We may now interpret the observed quasiparticle
damping force on a vibrating wire in He-8. In the ab-
sence of a full 3D theory we may expect the damping to
have the same general form as Eqs. (4) and (5), namely

F =Fo exp( —5/k T) [1 —exp( —XpF v/k T)], (6)

with k a constant of order unity.
The data we consider here comprise a series of quasi-

particle damping measures taken with a 4.5-pm-diam
NbTi filament. The data extend from 124 to 204 pK
and from zero velocity to beyond the onset of pair break-

relations in the paddle frame for near and far condensate
are as shown in Fig. 3.

We can use the same argument as that leading to Eq.
(4) above. Particles approaching the paddle from the
forward side (at 8) can reach the surface and be
reflected normally where incoming holes (at 8) cannot
unless their energy is above 6, +pFv, and vice versa for
the rear side. Thus we calculate the force with the same
integral as in Eq. (2) but with the upper limits of A+pFv
rather than 6, +2pF v. This gives

F=(16apFkT/h)exp( 6/kT) [1 —exp—( pFv/kT)], —

(5)

ing. We use the 0-bar results, since this set is fully dis-
cussed in Ref. 4. However, comparison with measure-
ments at other pressures is essentially similar.

The force of Eq. (6) is that expected for a constant
uniform velocity, whereas the resonator impedance in-
volves a time-averaged and spatially averaged velocity.
We need to convert this double average into an equi-
valent steady velocity to compare with (6). The spatial
average over the geometry of the loop and its behavior
under deformation is not too simple, but a reliable factor
can be estimated to convert the measured voltage from
the moving loop to the maximum velocity v of the wire.
Fortunately the time averaging is straightforward since
the resonators are always operated in a high-Q regime
(Q=100 to 5000) and despite the nonlinearity of the
damping the motion remains simple harmonic.

We thus extract the force as a function of maximum
velocity. Earlier the force was found to be strongly
nonlinear with velocity and apparently scaled with the
Landau velocity (5/pF). Comparison with the ideas in
the present Letter suggests the following: (i) The veloci-
ty scaling for the force should rather be in terms of a
thermal velocity kT/pF [Eq. (6)]; (ii) the universal
curve for force should have the exponential form sug-
gested by Eq. (6); and (iii) the prefactor Fo should be
given by the appropriate 3D generalization of Eqs. (4)
and (5).

The experimental reduced force is plotted against re-
duced velocity in Fig. 4. The raw data are shown in the
inset. The temperatures were derived from the low-
velocity damping which we can empirically transfer to
earlier measurements against Pt NMR, corrected to the
currently accepted temperature scale. The horizontal
axis of Fig. 4 is u pF/kT. We may note the following:

(i) The scaling with kT/pF is excellent.
(ii) The solid line in Fig. 4 represents Eq. (6), with u

simply replaced by v with X =0.95. The agreement is
remarkable. One should not read too much into the
value of k because of the averaging problem. We have
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FIG. 4. The normalized force from quasiparticles scattering
plotted against reduced maximum velocity pFu /kT for a wire

moving in He-B. The data are normalized to a slope of unity
near the origin (i.e., the linear damping region). The solid
curve represents [I —exp( —XPFv /k T)], cf. Eq. (6), with

k =0.95. Inset: The raw data. The onset of pair breaking at
high velocity is indicated by the dashed line. The subtraction
of this additional damping causes the scatter at the higher ve-

locities on the main graph.

also performed a time average of the damping derived
from Eq. (6), which shows the same type of variation,
but now fits the data with X, = 1.15.

(iii) Consideration of the magnitude of the force
awaits a fu11 3D treatment. However, the simple re-
placement of g(E) by the 3D density of states yields a
value of Fo which is only a factor of 5 greater than that
observed. Since the average momentum transfer per col-
lision in 3D will be much less than ~ 2pF assumed here,
and since the Aow around the wire extrema yields (by
similar arguments) a force of opposite sign, this repre-

sents very reasonable agreement.
The universal nature of the observed force and the

agreement with theory suggests that the present ideas
are essentially correct, and that the damping force is
determined by the accessibility of the wire to excitations
for normal scattering processes.

The principal general conclusion we reach is that the
force on a moving object in the excitation gas in He-8
becomes independent of velocity at velocities greater
than kT/pF, until the pair-breaking velocity is reached.
At low velocities, however, the force is linear in velocity,
the wire response being as if to a "normal Auid. " Figure
2 shows the unique transition from this normal-Auid be-
havior at the low-v limit continuously to the velocity-
independent force regime when u))kT/pF. This must
represent a general result for all Cooper-pair superfluids
with isotropic gaps. We are not aware that such ideas
have been at all widely discussed earlier, since it is only
in He-8 in the very-low-temperature regime that veloci-
ties significantly greater than those appropriate to the
two-Auid model can be reached in practice.
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