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Steady-State Distribution of Generalized Aggregation System with Injection
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We consider the kinetics of a steady-state aggregation process in which the basic dynamical variable is

a "charge" which can assume both positive and negative values. We rigorously show that the charge dis-

tribution follows a power law in the steady state which is sustained by random injection. The exponent
of the power law depends both on the type of injection and on the spatial dimension.

PACS numbers: 47.25.—c, 05.40.+j, 05.70.Ln, 82.20.—w

An aggregation system typically involves the irreversi-
ble joining of diftusing particles whenever they meet.
Since such an irreversible process is a typical nonthermal
equilibrium phenomenon, we expect that the study of the
statistical properties of aggregation is a basic step to-
ward the construction of a statistical physics for systems
far from thermal equilibrium. Considerable work has al-

ready been performed on the statistical properties of ag-
gregation, and it is acknowledged that a steady state
which is quite diAerent from thermal equilibrium can be
realized by the continuous injection of small particles. '

For example, for many aggregating systems in the steady
state it is known that the cluster mass distribution fol-
lows a power law with infinite variance. '

In this paper, we generalize steady-state aggregation
to include the possibility that the dynamical variable can
have both positive and negative values. Intuitively we

can interpret each cluster having a positive or negative
"charge" which is conserved when two particles collide.
We study the steady-state properties of this generalized
system for the following. two types of injection: (1) ran-
dom positive and negative injection and (2) random pair
creation injection. It is theoretically shown that the dis-
tribution of the charge m in the steady state has a
power-law tail for any type of injection in one dimension
and in the mean-field case. The exponent of the power
law depends both on the type of the injection and on the
spatial dimension.

First, we describe the model. We consider the aggre-
gation process in a discretized space and time. On every
site there is at most one particle. If more than two parti-

cident particles. Let m(j, n) be the charge of the parti-
cle on site j at the nth time step. The aggregation pro-
cess can be represented by the following stochastic equa-
tion for m(j, n):

m(j, n+1) =g Wjk(n)m(k, n)+I(j,n),
k

r

Z, (p, n)=(exp ip g m(j, n) ),j=l
(2)

where 1(j,n) denotes the charge injected at the jth site
at time n, and Wjk(n) is a stochastic variable which is

equal to 1 when the particle on the kth site jumps to the
jth site and which is equal to 0 otherwise. Since one par-
ticle cannot go to two diff'erent sites in a single time step,

Wjq (n) must be normalized as gj Wji, (n) = l. In the fol-

lowing theoretical analysis we consider the two simple
cases: (A) Wji, (n) =1 with probability —,', Wjk 1(n) =1
with probability —,', and Wji, (n) =0 for kAj, j—1; (B)
Wjt, (n) =1/N with probability 1/N, where N is the total
number of sites, which will be taken to infinity in our
theoretical analysis. Case (A) with periodic boundary
condition corresponds to the situation of aggregating
Brownian particles in one dimension if we observe the
system from a coordinate which moves with a constant
mean velocity of —,

' . Case (B) corresponds to the mean-

field limit.
The distribution of m in case (A) can be obtained by

introducing the r-body characteristic function

cles happen to hop onto one site, they immediately where & & denotes the average over all realization of
coalesce into a single particle with the charge of the [Wjk(n)l. Assuming that the distribution of injection is

product equal to the sum of the charges of the two in- independent and identical, we have the following evolu-
! tion equation for Z„ from Eq. (1):

r r

Z(p n+I)=(exp

ipse

QIPn(n)m(kn)+ip g i(jn) ) =%(p)'(Z+, (pn)+2Z(pe)+Z, —&(pe)fj4, (3)
j=l k j=l

where (I)(p)—:&exp[ipI(j, n)]& is the characteristic function for the injection process which can be expanded as

@(p) =1+i&I&—&I &p /2+
In the steady state we have the following set of linear equations for Z„(p), r =1,2, 3, . . . , with the boundary condi-

tion Z0=1:
Z„+ ) (p) + [2 —4&(p) "]Z, (p) +Z„((p) =0 . (4)
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Neglecting higher-order terms of p in +(p) we can show
that Eq. (4) becomes identical to the following Bessel
function's recurrence relation:

where c is a numerical constant. Since the characteris-
tic function is the Fourier transform of the probability
density p(m), we obtain the charge distribution by inver-
sion. In the case where (I) & 0 (or (I) & 0) we have

p (m) &x m i, for m » (I) (or for m « (I)),
while in the case (I) =0 we have

p(m) ~ m ~i3, for
l
m I && (I ~) 'i2.

(7a)

(7b)

Equation (7a) shows a one-sided power law whose ex-
ponent agrees with that of the known distributions for
positive variables. Equation (7b) gives a symmetric
power law which is a new property of the "charge aggre-
gation. "

Next we consider pair creation injection where a posi-
tive and a negative charge are injected simultaneously
but randomly at nearest-neighbor sites. Mathematically
the injection is given by I(j,n) =I, I(j + l, n) = —I It is.
easy to show that the many-body characteristic function
satisfies the following set of equations instead of Eq. (4)
in the steady state:

Z (p)+ [2 —4&(p) ']Z (p)+1 =0, (8a)

and for r =2, 3,4, . . . ,

1(p)+ [2 —4&I&(p) ]Z, (p)+Z, — (p) =0. (8b)

Equations (8a) and (8b) can be transformed into a
quadratic equation for Zl(p), and by solving it we get
the following symmetric charge distribution:

p(m)~ im i
', for im i

»(I')'". (9)

Note that the exponent of —2 is the same as that of a
Lorentzian.

In the mean-field case (B), we can derive the following
equation for the time evolution for both types of injection
processes:

N

Z, (p, n+1) =e(p) g a„Z, (p, n)',
r=0

(10)

J„+i (x) —2n J„(x)/x+ J„ 1 (x) =0,
by taking x= 1/[ —2i(l)p —(I )p ] and n=r —1/x.
Then, the solution of Z[ is evaluated using the properties
of Bessel functions as

c(I)'" I pl'"i '"+ ', for (I)~0, (6a)
1
—c(I )'i

ipse
I 2 'i +, for(I)=0, (6b)

Here the pair creation injection is included in Eq. (11b)
which gives the same distribution as Eq. (9). Equation
(1 la) gives the following solution for m »(I) & 0 (or for
m «(I) & 0):

p(m) ~ im i (12)

TABLE I. The power exponent of the steady-state distribu-
tion for the one-dimensional case (1D) and the mean-field case
(mf). The distribution is symmetric when the mean value of
the injection, &I), is equal to zero including the case of pair
creation injection (PC).

which agrees with the known solution in the case where
m can take only positive values.

The exponents of the power laws are summarized in
Table I. We have Lorentzian distributions both in one
dimension and in the mean field for pair creation injec-
tion, while for uncorrelated injection the exponents for
one dimension and mean field diA'er. These results sug-
gest the possibility that the critical dimension of the
charge aggregation system depends on the types of injec-
tion. It can be estimated to be 1 or less for the pair
creation injection and to be 2 or larger for the uncorre-
lated random injection.

As we have seen so far our generalized aggregation
model has no control parameter and in the steady state it
automatically chooses a power-law distribution which
can be considered as a kind of critical behavior. We may
regard our model as a new type of the self-organized cri-
ticality proposed by Bak, Tang, and Wiesenfeld. Bak's
model is composed of threshold elements and it shows
critical behaviors in space and time. Our model shows a
critical behavior in the distribution of the field variable,
m. Both of these two models are very simple and seem
to be complementary. We might expect that the notion
of self-organized criticality can be deepened by analyz-
ing and combining these two basic models.

It should be noted here that the steady state of our
model is a little diAerent from ordinary steady states.
We can easily show from Eq. (3) or (10) that the vari-
ance, (m ) —(m), grows always linearly with time. This
is a pitfall which might make us doubt the existence of
the steady state itself; however, there surely exists the
steady state in which the variance is divergent. We can-
not only prove the stability of the steady-state distribu-
tion obtained precedingly, but also calculate the relaxa-
tion to the steady state.

Because of this divergence an intuitive understanding
is possible to the question why we always have a power-
law distribution in the steady state of our model. In the
theory of stable distributions the central-limit theorem

where a„—= (, ) (1/N) "(1—1/N) ". In the limit N
~, the steady-state solution of Eq. (10) is obtained as

1 —J2(I) '
i p i' i ' + for (I)&0, (1 la)

1&
—«'&'"& pl+ &or «& ==0. (»b)

1D
mf

&I) =0 PC
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is generalized to independent random variables with
divergent variance. It is known that the limit distribu-
tion of the sum of such variables is, if exists, a non-
Gaussian stable distribution which has a long tail of
power. In our model the random variable m can be
decomposed into a sum of aggregated variables which
also have divergent variances. Although we cannot
directly apply the generalized central-limit theorem to
our model because the aggregated variables may have
some mutual dependence, it seems likely that the limit
distribution of m belongs to a non-Gaussian stable distri-
bution and thus has a power tail.

Relating to the problem of the dependence, we can
show that the mutual dependence of the field variables is
very weak even in one dimension. It is already known in
the case of constant injection that the r-body charac-
teristic function, Z, (p), is nearly equal to the indepen-
dent case, [Z~(p)]", in the vicinity of p =0. The same
relation also holds for the generalized injection cases.
An interesting consequence of this result is that the dis-
tribution of the sum of r charges, m~+m2+ . . +m„,
has the same power tail. As a result the variance of the
total charge in an interval of finite length is always diver-
gent. This extraordinarily large spatial fluctuation of
charge distribution might be related to the segregation
phenomenon which has been found for two species an-
nihilation system with injection. '

The potential applicability of our model is expected to
be very wide. By regarding m(i) as the height diA'erence
in a unit length we can consider a random surface prob-
lem in one dimension. " The aggregation process makes
two dislocations coalesce and the injection creates a new
dislocation or a bump (pair creation). The above steady
state corresponds to the situation that these smoothing
and roughening efI'ects balance.

Another potential field of application may be tur-
bulence. It is well known that one-dimensional tur-
bulence governed by Burgers equation is described by a
set of shock waves which behave just like sticky particles
in the low-viscosity limit. ' Relations between three-
dimensional turbulence and aggregation phenomenon
have not been clarified yet, but a kind of aggregation
process might be also relevant in three dimensions. The
author and a co-worker have already analyzed a vector-
ized version of the aggregation process, the vortex-tube
aggregation. ' We have numerically shown that there
appears a statistically steady state when we keep inject-

ing vortex rings at random, and found a Lorentzian dis-
tribution of circulation in the steady state. Experimen-
tally it is known that the relative velocity distribution of
fully developed stationary turbulence also follows a
Lorentzian. ' Since the circulation is expected to be
roughly proportional to the relative velocity, this coin-
cidence might suggest that three-dimensional turbulence
actually has a deep relation to the steady state of gen-
eralized aggregation with injection.
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