VOLUME 63, NUMBER 23

PHYSICAL REVIEW LETTERS

4 DECEMBER 1989

Analytical Progress towards the Mass Spectrum and Deconfining Temperature
in SU(3) Gauge Theory

Claus Vohwinkel @

Department of Physics and Supercomputer Computations Research Institute,
Florida State University, Tallahassee, Florida 32306
(Received 15 September 1989)

Using Liischer’s small-volume expansion, the mass spectrum and deconfining temperature of SU(3)
gauge theory are evaluated. Including nonperturbative features by restoring symmetries which were
broken in perturbation theory we obtain results which are valid up to intermediate volumes. The mass
spectrum obtained is in good agreement with the perturbative results for small volumes, and with Monte
Carlo data in medium-sized volumes. Using asymmetric volumes we are able to estimate the deconfining
temperature and find reasonable agreement with Monte Carlo calculations.

PACS numbers: 11.15.Kc, 11.15.Tk

In this Letter I describe an approach which is based on
a small-coupling expansion of the continuum theory in a
finite box pioneered by Liischer.! The expansion ob-
tained this way is an expansion in the physical volume of
the system. Defining the theory in a box will produce a
discrete momentum spectrum of the fields and, as long as
the spacing is large enough (i.e., the box is small
enough), one is allowed to treat higher momentum
modes as a perturbation to the lower modes. One can
define an effective Hamiltonian in the modes with
momentum smaller or equal than some momentum ko by
integrating out all modes with a momentum higher than
ko perturbatively, and use standard quantum mechanics
to derive the mass spectrum of the effective Hamiltoni-
an.?? The choice of k¢=0, i.e., integrating out all non-
zero-momentum modes, is the easiest one, but we are
still left with a multidimensional effective Hamiltonian
[9 dimensions for SU(2) and 24 for SU(3)].

’t Hooft* defined electric and magnetic flux in the box
in a gauge-invariant way and was able to relate the elec-
tric flux to a group of symmetry transformations, called
central conjugations, of the Hamiltonian which is iso-
morphic to the center Z, of SU(n). These transforma-
tions divide the Hilbert space into n3 subspaces and
states with nonzero electric flux transform nontrivial un-
der central conjugations. For small coupling g the wave
functions are concentrated around the classical vacuum
and its central conjugations. For larger g tunneling be-
tween these different sectors sets in (i.e., the wave func-
tion is nonzero for the gauge configurations lying be-
tween the vacuum and its central conjugation) and the
energy is no longer degenerate with respect to the elec-
tric flux.

The effective Hamiltonian of Liischer is not symmetric
under the central conjugations. A way to restore the
symmetry and to define electric flux has been pioneered
by Koller and van Baal®® (with an amendment by the
present author’) for the case of SU(2). This process can
be described by using the effective Hamiltonian in each

of the toron sectors (i.e., the sectors obtained by expand-
ing about the vacuum or any of its central conjugations)
and extending the support of the wave functions to the
region which is obtained by patching the sectors togeth-
er. The wave functions are required to be continuous
across the sector boundaries. The effective Hamiltonian
is then symmetric under central conjugations and we can
construct the different sectors of electric flux by enforc-
ing the transformation laws for different units of electric
flux on our wave functions. However, this process can be
done only for certain gauge configurations, namely the
vacuum valley (see, for example, Refs. 6 and 8). It is
reasonable, however, to assume that the transformation
laws obtained this way are a good estimate for the trans-
formations on all gauge configurations. Using this ap-
proach and extending it to SU(3) we are able to obtain
the glueball spectrum in intermediate volumes.

Another point of interest is the deconfining phase tran-
sition in SU(3). However, this study is difficult to per-
form in symmetric volumes, because one would require
very large volumes to overcome finite-size effects, which
shift the critical temperature. Instead of using a sym-
metric torus we will exploit an asymmetric geometry®'®
and use finite-size scaling theory''™!? to relate “small-
volume” results to the infinite-volume limit. In this way
we obtain an estimate of the SU(3) deconfining transi-
tion.

The details of the calculation will be described in a
forthcoming publication.®

The results for the mass spectrum are obtained by
considering a symmetric box of size /. Compared to
SU(2) we have an additional quantum number for the
glueball spectrum, which is the transformation under
charge conjugation C. Our states are described by the
irreducible representation of the cubic group, their pari-
ty, and the charge parity. The mass estimates and the
energy of the electric flux are obtained by subtracting
the vacuum energy (i.e., the lowest 4, from the ener-
gy eigenvalues of the effective Hamiltonian). All ener-
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FIG. 1. Mass ratios m/m(A4{"*) in the perturbative regime
at g=0.6. The lowest states of the 45 ~,7 ~,T; ~ represen-
tations form a 3~ ~ multiplet. The second lowest states of the
AFT, T+, E** and the lowest state of the T form a 4++
multiplet.

gies given below were calculated using the Raleigh-Ritz
variational technique with a basis of 1500 wave func-
tions, which were selected for each coupling g out of a
set of approximately 30000000 wave functions. The
SU(3) irreducible representations (0,0) through (4,4)
were used; however, some wave functions involving (4,4)
were not taken into account. For PC= —1 the wave
functions vanish on the vacuum valley and we were not
able to derive the boundary conditions for this case and
carried over the results from the PC=+1 sectors.
Therefore, the interpretation of the results for the PC
= —1 sectors is doubtful beyond the tunneling transi-
tion. We estimate the errors of our masses due to the
finite basis to be of the order of (2-5)% for the PC=+1
states. For the sectors with PC= —1 the SU(3) repre-
sentations that contribute to the wave states are reduced
to (1,1), (2,2), and (3,3) and we expect the error to be of
the order of (10-20)%.

In order to compare our results to the perturbative cal-
culation found in Ref. 3 we plot the mass ratios
m/m(A{" 1) for various representations of the cubic
group at g=0.6. This value for g is large enough to
avoid the failure of our basis for small g, but still small
enough to avoid effects of tunneling, which are not in-
cluded in Ref. 3. The ratios are given in Fig. 1. We find
good agreement with the results of Ref. 3. To compare
our results with Monte Carlo results'*'> we use the Fish-
er scaling variable z, which expresses the physical size of
the system and is defined by z =ml, where m is a typical
mass of the system and / is the size of the system. In
Fig. 2 we plot the mass ratio m(4;"+)/m(E*") and
the ratio V&/m(E **) of the square root of the “string
tension” and the £ % mass versus zz++=m(E " *)L In
contra- distinction to SU(2) we do not have a smooth be-
havior of the A;t ™, E** mass ratios during the onset of
tunneling. Although the absolute value of the masses
and the onset of tunneling are slightly off, the mass ra-
tios themselves agree well with Monte Carlo results.
The sharp crossover of the m(A4)/m(E) mass ratio ex-
plains the seeming contradiction between the perturba-
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FIG. 2. Mass ratios and Monte Carlo results. The values
for the mass ratio up to z =1 are the perturbative results of
Ref. 3 and the Monte Carlo data are from Ref. 14.

tive results® and the Monte Carlo data, which were only
taken in the symmetric phase.

Some other mass ratios are given in Fig. 3. Analogous
to the case of SU(2) the T3 % is degenerate with the
E** for small g and becomes twice as heavy beyond
the tunneling transition. The £** and At are then
the lowest masses in the system. If we were able to make
our box larger and larger, we would encounter at some
point the restoration of the O(3) rotational symmetry.
At this point the E*% and the T;'* representations
should combine to JP€=2%* multiplets. It is reasonable
to assume that the lowest £ and T, states will combine
to the lowest 2+ multiplet.

Monte Carlo results'® give as an estimate for the T’
before the symmetry restoration (zAI++ =7)

m(TF%) _
mA4tt)

which is identical to our result at z 4++ =7.
Further, Monte Carlo calculations predict as an esti-
mate for large volumes

m@**) _
m(@O*tt)

which lies between the E*" and 75" masses in the
intermediate-volume case.

The T5 ~, the lower T{ ~, and an 4; ~ (not shown
in Fig. 3) form in the perturbative regime a 3~ ~ multi-
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FIG. 3. Mass ratios for some other low-lying states.
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plet. It is not clear in which way the states will recom-
bine after the second crossover to J*C multiplets. In one
scenario a 3~ ~ is formed from the same states as in the
perturbative region, and the next higher 7, ~ isa 1~
state. On the other hand, the lowest 7 ~ can become a
1~ 7 in the large-volume limit and the next higher 7; ~
may combine with the 7> ~ and the 4, ~ toa 37~
multiplet.

To study the phase transition we follow the approach
of Ref. 10 and consider the theory in a box of size 11?00,
[ =z,1,, with [, being the (Euclidean) time direction and
z;= 1. The phase transition will give a signal in the
spectrum at some specific g., which we can convert with
the help of the Callan-Symanzik equation to the physical
temperature 7, in units of the scaling parameter A.

Because our system is of finite size it will not have a
real phase transition, but a crossover from one phase to
another. In general, the crossover will not occur at the
critical temperature of the infinite system, but one can
try to relate the signal of a system of size z to the
infinite-volume limit by means of the finite-size scaling
theory of phase transitions.

For g=g. the large-/ behavior of the energy of the
’t Hooft electric flux € is

e(l,g) =e(o0,g)[1+0C(e @] for g> g 3)
and
ell,g)=0¢(e ma@y por g<g, (€))

where ¢y,c; are positive and monotonically increasing in
|g —g.| for g close to g.. Consider two volumes, /,/%co
and /,/"*eo, with /"> [. The time direction is /, and the
infinite direction is the third spatial direction. From Eqgs.
(3) and (4) we see that it is possible to find a coupling
go(l,1') with

l'e(I',g) > le(l,g) for g>go(l,l") (5)
and

l'e(l',g) <le(l,g) for g <go(l,l'). (6)
This implies

l'e(l',go) =le(l,go) @)

and from Egs. (3) and (4) it follows further that '®
Ilim goll,1") =g, . (8)

In Fig. 4 we plot z,¢l, for z, =1.2,1.4,...,2.0.

For the three largest z, values we obtain a fixed point
at g =g, =2.0, which gives for the critical temperature
T.=~3.5Ams (MS denotes the minimal-subtraction
scheme). Using the relation'”'® between Ams and Anatice
this is converted to

T(‘ = 38Alatlice . (9)
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FIG. 4. Energy of the electric flux times z, for asymmetric
volumes.

Recent Monte Carlo results in the scaling region yield '°
T, == 47 Aatice - (10)

Thus we find a reasonable agreement between the two
approaches.

At this point let me remark two things. The interpre-
tation of the shortest direction as the time direction and
the infinite direction as a spatial direction will give
another meaning to the electric flux. From ’t Hooft’s du-
ality relation® it follows that a unit of “electric flux”
defined in the time direction corresponds to a mixture of
systems which all have one unit of electric flux, but in
addition also have magnetic flux. Another point? is that
the approximation we are doing may introduce an error
which is more significant for the deconfinement transi-
tion than for the mass spectrum.

In summary, we find reasonable agreement between
the analytical calculation and the Monte Carlo results in
intermediate volumes. The fact that the mass of the
2%+ lies between the E T 1 and 75 allows us to specu-
late that the main ingrediant to reach large volumes is
indeed the spatial O(3) symmetry restoration, whereas

other effects play a minor role. This view is further sub-
stantiated by the agreement of the two methods with
respect to the deconfining temperature: The only “in-
gredient” in the analytical calculation is the tunneling
transition. This is already enough to obtain the correct
order of magnitude for T,.

We conclude that the perturbative approach is suited
to describe the intermediate-volume range of gauge
theories. Unfortunately, for the mass spectrum it can
only make very vague predictions for large volumes, be-
cause it is not (yet) capable of restoring the O(3) rota-
tional symmetry and we have to view our particles as be-
ing still squeezed in too small a box. An advantage of
the analytical approach is certainly that we are able to
understand the dynamics better than in a numerical ap-
proach.

In order to improve the analytical calculation and ex-
tend it to larger volumes, we would have to tackle the
following problems. The use of a one-loop calculation
for g up to =2.5 is somewhat questionable and we
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should include higher-order corrections. The more press-
ing problem, however, is the nonzero-momentum modes.
For masses of the order of m/ =10, they start to give
relevant contributions to the eigenstates and perturbative
treatment is no longer justified. An exact treatment of
the modes would achieve rotational-symmetry restora-
tion and allow a correct treatment of the boundary con-
ditions. Whereas the former could give rise to the large-
volume mass spectrum, the latter is of importance for the
deconfining transition, because tunneling is enhanced in
two directions compared to a symmetric volume. But al-
ready the exact treatment of the first nonzero-
momentum mode would give rise to a 3x24 =72-
dimensional Hamiltonian in SU(3), which makes this
problem nearly impossible. It should, however, be feasi-
ble to treat the first nonzero-momentum modes exactly
for the case of SU(2). Finally, one can include fer-
mions?'?? in the approach, which could give, even for
small volumes, a testing ground for lattice calculations.
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