Exact Fractal Dimension of 2D Ising Clusters

In a recent Letter,¹ Stella and Vanderzande argued that in two dimensions the fractal dimension of Ising clusters at the critical point should be $D_F = \frac{187}{96}$. Ising clusters, which are connected spins of the same sign, are distinct from Ising droplets in models of correlated sitebond percolation.² The above authors used the Potts lattice-gas version of these models^{3,4} to describe its expected phase diagram,^{3,4} and conjecture that the Ising critical point is a tricritical point in this wider space of the Q=1 Potts model. Hence, from the known exact value of the Potts tricritical magnetic exponent^{4,5} x_H $=\frac{5}{96}$ they get $D_F \equiv 2 - x_H$. In this Comment, we derive the above Ising-cluster fractal dimension by a Coulombgas technique applied *directly* to the O(n=1) model at its critical point. Second, we stress again^{6,7} that the geometrical equivalence between the O(n) loop model and the Q-state Potts model applies, not only for Q=1and n=1, but for any $n=\sqrt{Q}$, $Q \in [0,4]$, $n \in [0,2]$, between the *low-temperature* (dense) phase of the O(n)model and the $Q = n^2$ critical Potts model, or between the critical O(n) model and the dilute tricritical Potts system.

We start from the Ising model on the triangular lattice \mathcal{T} (Fig. 1). In its *low*-temperature expansion, the clusters of up or down spins have natural boundaries which are nonintersecting loops on the dual hexagonal lattice \mathcal{H} . These loops are also graphs of the *high*-temperature expansion of the O(n) loop model⁸ defined on \mathcal{H} by

$$Z_{\mathcal{O}(n)} = \sum_{\mathcal{G}} W_{\mathcal{O}(n)}(\mathcal{G}) = \sum_{\mathcal{G}} K^B n^L , \qquad (1)$$

where the sum runs over graphs \mathcal{G} on \mathcal{H} made of nonintersecting loops, with total numbers of bonds B and of loops L. Equation (1) for n=1 thus reconstructs the low-T expansion of the triangular Ising model with coupling constant J if $K \equiv e^{-2J/T}$; the critical point occurs at⁸ $K_c = 1/\sqrt{3}$. We define for $X, Y \in \mathcal{T}$ the correlator⁵

$$G_{\mathcal{O}(n)}(X-Y) = \sum_{\mathcal{G}} W_{\mathcal{O}(n)}(\mathcal{G}) \mathbf{1}(X,Y) , \qquad (2)$$

where 1(X, Y) is the characteristic function of a cluster, i.e., 1=1 if X and Y are in the same connected component, and 1=0 if they are separated by *at least* one loop of the O(n=1) model. To calculate (2), the model (1) is transformed into a solid-on-solid (SOS) model.^{7,8} Height variables φ are defined on the centers of the hexagons, such that two adjacent heights are equal or differ by $\pm \pi$. The loops of the O(n) model, once *arbitrarily oriented*, become SOS domain walls with a step of $\pm \pi$ on the left of any oriented line. The weight W_{SOS} is the product along the walls of local factors Ke^{iu} (Ke^{-iu}) at each left- (right-) turning vertex. An oriented loop on \mathcal{H} has a total of left minus right local turns always equal to ± 6 , hence a phase factor $e^{\pm 6iu}$. Summing over orientations yields $Z_{SOS} \equiv Z_{O(n)}$ for $n=2\cos(6u)$.⁸ We define then the SOS correlator^{8,9}

$$G_{\text{SOS}}(X-Y,e_1,e_2) \equiv \sum_{g} W_{\text{SOS}}(g) e^{ie_1\varphi(X) + ie_2\varphi(Y)}.$$
 (3)

FIG. 1. Clusters of \pm spins surrounded by loops on the dual lattice.

The O(n) weights for loops are reconstructed⁹ if the "electric charges" e_1, e_2 satisfy $e_1 + e_2 = 0, 2e_0 \pmod{2}$, where⁸ $e_0 \equiv -6u/\pi$. Furthermore, the characteristic function 1 in (2) is obtained if we set in (3) $e_1 - e_0$ $= \pm \frac{1}{2} \pmod{2}$ and $e_2 - e_0 = \pm \frac{1}{2} \pmod{2}$. The solution is $e_1 = e_0 + \frac{1}{2} \pmod{2}$, $e_2 = e_0 - \frac{1}{2} \pmod{2}$ such that (2) is identical to (3). At $K = K_c$ (or $K > K_c$) G_{SOS} (3) appears as the correlation function of two electric charges, $G_{SOS}(X-Y,e_1,e_2) = |X-Y|^{e_1e_2/g}$, where ^{7,8} g is the Coulomb-gas coupling constant parametrizing n = -2 $\times \cos(\pi g)$, $e_0 = \pm (1-g)$, with $g \in [1,2]$ at $K_c(n)$ and $g \in [0,1]$ in the dense phase $K > K_c$. Hence the leading cluster exponent is $x = -e_1 e_2/2g = 1/8g - (1-g)^2/2g$. The fractal dimension of the interior of the loops in the O(n) model is therefore $D_F = 2 - x = 1 + g/2 + 3/8g$. For the critical Ising model n=1, $g=\frac{4}{3}$ and we get D_F $=\frac{187}{96}$. Notice that for percolation, i.e., the dense n=1model⁶ $(g = \frac{2}{3})$, we recover $D_F = \frac{91}{48}$. Note that $D_F \le 2$ requires $n \in [0,2]$ such that $\frac{1}{2} \le g \le \frac{3}{2}$ with the upper limit $D_F = 2$ for self-avoiding walks (n=0), dilute $(g=\frac{3}{2})$ or dense $(g=\frac{1}{2})$. Lastly, in the Potts model, the magnetic exponent reads^{5,8} $x_{H,Potts} = 1/2g' - (4$ $(-g')^2/8g'$, where $\sqrt{Q} = -2\cos(\pi g'/4)$, with $g' \in [2,4]$ or $g' \in [4,6]$ for the critical or tricritical Potts point, respectively. We check the forementioned $x_{O(n)} \equiv x_{H,Potts}$ for $g \equiv g'/4$, i.e., $n = \sqrt{Q}$.

B. Duplantier and H. Saleur

Service de Physique Théorique de Saclay

91191 Gif-sur-Yvette CEDEX, France

Received 21 April 1989

PACS numbers: 05.50.+q, 05.70.Jk, 64.60.Ak

¹A. L. Stella and C. Vanderzande, Phys. Rev. Lett. **62**, 1067 (1989).

²A. Coniglio and W. Klein, J. Phys. A 13, 2775 (1980).

³B. Nienhuis, A. N. Berker, E. K. Riedel, and M. Schick, Phys. Rev. Lett. **43**, 737 (1979).

⁴R. B. Pearson, Phys. Rev. B **22**, 2579 (1980); B. Nienhuis, E. K. Riedel, and M. Schick, J. Phys. A **13**, L189 (1980).

 5 M. den Nijs, Phys. Rev. B **27**, 1674 (1983).

⁶H. Saleur and B. Duplantier, Phys. Rev. Lett. **58**, 2325 (1987); B. Duplantier, J. Stat. Phys. **49**, 411 (1987); B. Duplantier and H. Saleur, Phys. Rev. Lett. **59**, 541 (1987).

⁷B. Nienhuis, Phys. Rev. Lett. **49**, 1062 (1982).

⁸B. Nienhuis, in *Phase Transitions and Critical Phenomena*, edited by C. Domb and J. L. Lebowitz (Academic, New York, 1987), Vol. 11.

⁹B. Duplantier and H. Saleur, Phys. Rev. Lett. **60**, 2343 (1988).

© 1989 The American Physical Society

2536