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Exact Fractal Dimension of 2D Ising Clusters

In a recent Letter, ' Stella and Vanderzande argued
that in two dimensions the fractal dimension of Ising
clusters at the critical point should be DF= '9'6'. Ising
clusters, which are connected spins of the same sign, are
distinct from Ising droplets in models of correlated site-
bond percolation. The above authors used the Potts
lattice-gas version of these models ' to describe its ex-
pected phase diagram, ' and conjecture that the Ising
critical point is a tricritical point in this wider space of
the Q =1 Potts model. Hence, from the known exact
value of the Potts tricritical magnetic exponent x~

96 they get DF —= 2 —xH . In this Comment we derive

the above Ising-cluster fractal dimension by a Coulomb-
gas technique applied directly to the O(n= 1) model at
its critical point. Second, we stress again ' that the
geometrical equivalence between the O(n) loop model
and the Q-state Potts model applies, not only for Q=1
and n =1, but for any n =JQ, Q & [0,4], n E [0,2], be-
tween the low temperat-ure (dense) phase of the O(n)
model and the Q=n critical Potts model, or between
the critical O(n) model and the dilute tricritical Potts
system.

We start from the Ising model on the triangular lattice
(Fig. 1). In its low-temperature expansion, the clus-

ters of up or down spins have natural boundaries which
are nonintersecting loops on the dual hexagonal lattice

These loops are also graphs of the high-temperature
expansion of the O(n) loop model defined on P by

Zo(.) =Z II'o(.)(&) =2K n', (1)

where the sum runs over graphs 5' on )V made of nonin-
tersecting loops, with total numbers of bonds B and of
loops L Equation (.1) for n=1 thus reconstructs the
low Texpansion o-f the trtan~ular Ising model with cou-
pling constant J if K—=e; the critical point occurs
at K, = I/J3. We define for X, Y E 'T the correlator

Gp(„)(X Y) =g Wp(„) (0 ) 1 (X,Y), (2)

where 1(X,Y) is the characteristic function of a cluster,
i.e., 1=1 if X and Y are in the same connected com-
ponent, and 1 =0 if they are separated by at least one
loop of the O(n =1) model. To calculate (2), the model
(1) is transformed into a solid-on-solid (SOS) model. '

Height variables p are defined on the centers of the hex-
agons, such that two adjacent heights are equal or diAer

by ~ n. The loops of the O(n) model, once arbitrarily
oriented, become SOS domain walls with a step of +z
on the left of any oriented line. The weight 8'so~ is the
product along the walls of local factors Ke'" (Ke '") at
each left- (right-) turning vertex. An oriented loop on
"iY has a total of left minus right local turns always equal
to ~ 6, hence a phase factor e —'". Summing over
orientations yields Zsps —Zo( ) for n=2cos(6u). We
define then the SOS correlator '

Gsos(X —Y,e),e2) —=X II'sos(&)e

FIG. 1. Clusters of + spins surrounded by loops on the

dual lattice.

The O(n) weights for loops are reconstructed if the
"electric charges" e),ez satisfy e(+ez=0, 2ep(mod2),
where ep= —6u/tr. Furthermore, the characteristic
function 1 in (2) is obtained if we set in (3) e( —ep
=+ —,

' (mod2) and eq —ep= ~ —,
' (mod2). The solution

is e( =ep+ —,
' (mod2), eq=ep ——,

' (mod2) such that (2)
is identical to (3). At K=K, (or K&K, ) Gsos (3) ap-
pears as the correlation function of two electric charges,
Gsos(X —Y,e (,e2) =

~
X—Y

~

' ', where ' g is the
Coulomb-gas coupling constant parametrizing n= —2
)&cos(trg), ep = ~ (1 —g), with g C [1,2] at K, (n) and

g C [0, 1] in the dense phase K & K, . Hence the leading
cluster exponent is x = —e (e q/2g = 1/8g —(1 —g) /2g.
The fractal dimension of the interior of the loops in the
O(n) model is therefore DF =2 —x =1+g/2+3/8g. For
the critical Ising model n=l, g= 3 and we get DF

96 Notice that for percolation, i.e., the dense n = 1

model (g = —', ), we recover DF = —'„' . Note that DF ( 2

requires n C [0,2] such that —,
' (g( —', with the upper

limit DF =2 for self-avoiding walks (n =0), dilute
(g= —', ) or dense (g= —,

' ). Lastly, in the Potts model,
the magnetic exponent reads ' xH p,«, = 1/2g' —(4
—g') /8g', where JQ = —2cos(trg'/4), with g'E [2,4]
or g' c [4,6] for the critical or tricritical Potts point, re-
spectively. We check the forementioned xo(„):xH p II,
for g=g'/4, i.e. , n =JQ.
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