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Novel Local Symmetries and Chiral-Symmetry-Broken Phases
in S =

2 Triangular-Lattice Heisenberg Model
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Using a non-mean-field approach the triangular-lattice S=
2 Heisenberg antiferromagnet with

nearest- and next-nearest-neighbor couplings is shown to undergo an Ising-type phase transition into a
chiral-symmetry-broken phase (Kalmeyer-Laughlin-like state) at small T Rem. oval of next-nearest-
neighbor coupling introduces a local Z2 symmetry, thereby suppressing any finite-T chiral order.

PACS numbers: 75.10.—b, 11.15.—q, 74.90.+n, 75.40.Cx

The triangular-lattice Heisenberg model has played an
important role in our understanding of the resonating-
valence-bond (RVB) states' in Heisenberg antifer-
romagnets. Recent developments in the RVB theory of
high-T, superconductors ' have drawn our attention to
this problem again. Kalmeyer and Laughlin ' proposed
a Laughlin-like variational RVB ground state for this
problem. This RVB state manifestly breaks the chiral
symmetry. As pointed out recently by Wen, Wilczek,
and Zee' (WWZ) and also by Wiegmann ' nonzero ex-
pectation values of operators like S;.(Six Sk) imply
chiral-symmetry breaking. It is clear that chiral symme-
try also implies the breaking of parity (P) and time re-
versal. WWZ also suggested using a fermionic mean-
field theory' for an RVB state exhibiting chiral-sym-
metry breaking on the frustrated square lattice.

In a pioneering work, Villain' pointed out unexpected
discrete degeneracies in classical frustrated spin systems
with continuous symmetries and introduced (among
many variables) pseudoscalar variables like S; (SJ xSk)
as leading to an Ising-like finite- T phase transition.
From Villain's work and the subsequent work' by
many authors, it is clear that this Ising-like phase transi-
tion is a novel "topological" phase transition. The two-
spin correlation function decays exponentially even in the
ordered phase. It is a phase transition from one classical
spin liquid to another classical spin liquid. By classical
spin liquid we mean a paramagnetic phase of classical
Heisenberg spins. The only property that distinguishes
the two paramagnets is the long-range order in the hand-
edness of triplets of neighboring spins in an otherwise
disordered magnet.

Kawamura and Miyashita ' (KM) have studied the
classical-spin triangular Heisenberg antiferromagnets by
generalizing the works of Villain, ' Lee el al. ,

' and Mi-
yashita and Shiba. ' KM suggest a novel SO(3) order
parameter and a finite- T Kosterlitz- Thouless- type of
phase transition. This transition is also between two
classical spin-liquid states. The works of Lee, Joanno-
poulos, and Negele and Imada suggest that such a
phase transition is absent for the S=

2 problem. This
strongly suggests that quantum fluctuations and perhaps

the half-integer nature of the spins suppress the above
chiral phase transition.

Using an order-parameter theory developed by me re-
cently, ' we study the S= 2 triangular-lattice Heisen-
berg system in order to understand the nature of the low-

temperature phase. We find a novel local Z2 symmetry
in the free-energy functional written in terms of a real
(pseudo) scalar chiral variable. This local symmetry
prevents any finite- T chiral-ordered state. However,
minor modifications such as the introduction of next-
nearest-neighbor coupling (aJ) converts this local Z2
symmetry into a global one. This leads to a finite-T Is-
ing phase transition and we locate the Ising phase
boundary approximately. For a positive the chiral vari-
ables (which are defined for every elementary triangle)
order ferromagnetically. In terms of symmetry this state
is the same as the Kalmayer-Laughlin RVB state. For a
negative the chiral variables order antiferromagnetically
and hence this state, unlike the previous case, breaks
translational invariance as well. Neither chiral state
breaks the global spin rotation symmetry nor has Neel-
type long-range order at nonzero T, and we call these
chiral RVB states. Chiral RVB states are likely to have
a gap for excitations, since a discrete symmetry has been
broken.

We study the S= 2 problem by a new approach using
chiral order parameters. The chirality operator was in-
troduced by WWZ ' for the quantum S= —,

' problem,

Xi. k =S; (S.x Sk ),
where S; is the spin-half operator. The above operator
changes sign under odd permutations of subscripts i, j,
and k and also changes sign under the time-reversal (an-
tiunitarity) transformation. This operator measures the
handedness of the three fiuctuating spins (a triad) at
sites i, j, and k. WWZ also found a remarkable identity

g;~1k = —
—,', (S;+SJ +St, ) + —,",

which expresses a three-spin coupling in terms of two
spin couplings. The above identity is valid only for
5 = —,

' spins. The eigenvalues of g are + J3/4 and 0.
I have used this identity to develop an order-parameter
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theory ' for the two-dimensional problems. Consider the
triangular-lattice Hamiltonian

H =JgS;.Sf+aJ g S;.S~, (3)
nn nnn

where aJ is the next-nearest-neighbor (nnn) coupling
and J is the nearest-neighbor (nn) coupling. We can
rewrite the above as

(a)

(b)

H= —8J g g~k+aJQS;. S~+const.
(ijk) nnn

(s)

H=
2 J g (S;+SJ+SI,) +aJQS; S) —

4 NJ, (4)
(ij k) nnn

where the first summation is over the shaded triangles of
Fig. 1(a). The second summation over the nnn decom-
poses into three independent triangular-lattice Hamil-
tonians each having nearest-neighbor coupling aJ in the
43x J3 sublattices. Thus the first term can be viewed as
coupling the three independent spin systems.

We rewrite Eq. (4) using the WWZ identity to get

FIG. l. (a) The shaded triangles are the ones on which g;,I,

and I;p, are defined. (b) Two triangles sharing a corner. The
first nontrivial Ising-like coupling of chiral variables occurs be-
tween these two triangles.

Notice that the first term favors chiral fluctuations owing
to the negative sign in front. Since the operators g;zk are
not independent if they share a common site, the chiral
Auctuations get correlated even for a =0. This together
with the correlation arising from the nnn couplings leads
to interesting chiral phases. The partition function is

Z(P) =Tre PH=Tr~ Texp —aJQ& S;.S~dz exp 8JQ I g~kdz ~,
nnn

where T is Feynman's time ordering which helps us to treat the operators as though they are commuting.
First, consider the case of a =0. We linearize the exponential using the Hubbard-Stratanovic identity to get

(6)

(8)

(1O)

PF[m] =8PJQJ m~jl, (z)dz —Nln2 — (Try )g~~ m~jkdz
(16J)'

+ Tr(Z )PJ~ m~1, (z)dz — P[Tr(Z )] ~ mjk(z)m I (z')dzdz'
(16J) t (16J) 2 2

~

2 2
41 (21) '

(16J)'+ g Tr(Typing) m (z)m (Z2) m (Z3) m

where the last term has a nontrivial time dependence
arising from time ordering in Tr [Tg(z~ )g(Z2)
xg(z3)g(z4)1. This term contains only two distinct g's
and m's corresponding to two neighboring triangles that
share a vortex.

The above expansion has a remarkable local Z2 sym-

metry (in space) term by term:

m;~k (z) o;&km;~k (z), (12)

where o.;jk = ~1 and is independent of z. This symme-

try is easily shown to exist for the case a =0 using the

(Z4)dz~ dz2dz3dz4+

trace properties of g operators on the triangular lattice.
The time dependence of the coe%cients in the expan-

sion is nonlocal in time at T=O. It is like a long-range
interaction between chiral variables in the time direction.
However, for finite T, the length of the time direction is
finite and by making the static approximation we can
make qualitatively exact statements for finite T. More-
over, the free-energy expansion given by Eq. (11) is a
high-temperature expansion. This converges for high
temperatures and there is no physical reason for it not to

r P rP
Z(P) =„SmTr Texp 16JQ J yak (z)m~zk (z)dz exp —

8 J + „mPp, (z)dz (7)

The auxiliary variables m;Jk(z) are real scalar variables and will be called the chiral variables. To have a consistent
sign convention for the product gm in the exponential we define m;~1, (z) to be a "pseudoscalar" variable:

m;, g(z) = —
m;p, (z) .

In the functional integral the boundary condition is

m;, k(z) =m~)I, (z+P) . (9)
The eff'ective free-energy functional is defined through the equation

Z(P) Jr~ —P ( l

Expanding Eq. (7) in powers of m, taking the trace, and collecting the cumulants we get the following for F[ml:
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converge at low temperatures. We conclude from our lo-

cal symmetry using the Elitzur-Wegner theorem that
we cannot have finite-temperature chiral-symmetry
breaking at any finite temperature for the model with

pure nearest-neighbor coupling. The m variable has
both sign (Z2) and magnitude iluctuations. Inspection
of the above free energy shows that the probability dis-
tribution for m is peaked around a nonzero value for
T & kT. We also do not expect any finite-T transition of
area- to power-law behavior of the Wegner-Wilson loop
because two-dimensional Z2 gauge theories are always
confining.

A necessary but not sufFicient prerequisite for spon-
taneous symmetry breaking is the absence of any local
symmetries in the corresponding variables. We show
below that this can be obtained by making the nnn cou-
pling a nonzero. In the expansion for F[m] terms which
break local symmetry and retain only global symmetry
start appearing. The first and important such term is

(Pi6J)'
a/(z/, zq)mj/, (z/)mj/ (z2)dz/dzq,

(»)
where

a(zl, z2)

TrT exp( —fgaJP„„„S;.Sjdz)gj/((z/)gj/~(z2)
Z

(i4)
and Z =Tr[exp( —PaJQ„„„S;Sj)]. By expanding in

powers of a we can see that the above is nonzero only for
finite a. We find that the above is a product of two-spin
correlation functions in the sublattice Hamiltonians. In
the static approximation it takes a simple form,

a(, , ) = —,', ((So.S ),) = —,', g (,P), (15)

where g/(a, p) is the nearest-neighbor spin-spin correla-
tion function of the J3&& v3 Hamiltonian with coupling
aJ at inverse temperature p. Thus Eq. (13) is an Ising-
like ferromagnetic nearest-neighbor interaction among
chiral variables,

—,'4 (16PJ) g& (a) gm;/km~/

which has only the global Zz symmetry. Inspection
shows that other higher-order terms which also have only
the global symmetry are small and the expansion is con-
vergent at high temperatures.

We estimate the chiral transition temperature (T, ) as
a function of a by the following procedure. The chiral
variables m are soft variables. They have, however, a
well defined root-mean-square value which is the largest
at small T. This is because the free-energy functional
F[m] has two well defined minima for T (J. Hence, at
low T we can approximate

m/j/& mp(p) z/j k mp(p) (m/j/& )~

where the average () stands for the functional average
with the Boltzmann factor exp[ —PF(m)] and z;//, is an

Ising variable = + 1. To get a feel for mp(p), the larg-
est value of mp(p) is the eigenvalue of the operator Zjk
which is J3/4. The least value is 0. For three coupled

spins the value of mp(p) is

m, (P) =iY/4(I+e '/")'".
This value gets reduced for the triangular-lattice prob-
lem by a finite amount because the three spins are cou-
pled to the rest of the system. Thus, we rewrite our Ising
interaction as

—
pg (8PJ) g/ (a)mp(P) g zj/(zj/'

From the above equation we define the eAective fer-
romagnetic coupling between the chiral variables z;~k as

Jchiral 24 P '(16PJ)'g/ (a,P)mp (P) .

The above is a good approximation for PJ not very
large compared to unity. Thus we have a ferromagnetic
Ising model defined on a triangular lattice with nearest-
neighbor interaction as an eA'ective chiral Hamiltonian.
Using the standard result for the transition temperature
of this well-known ferromagnetic Ising model we get an
expression for the chiral transition temperature,

(1/81n3)(16P,J) g~ (a,P, )mp (P,J) =1.
We have thus obtained an implicit equation for the tran-
sition temperature. It is easily checked that our analysis
is valid for very large a as well. In fact, for a))1 the
transition temperature saturates and is independent of e,
and it is given by

k T, = (27/8 ln 3)J .

For a positive and & 1 the expression for T, is

kT, = Ja(3ln3) 'j .

For a large and negative the three sublattices are fer-
romagnetically coupled and chiral fluctuations are re-
duced, leading to a large reduction in the transition tem-
perature. Notice that in getting the above asymptotic re-
sult for the transition temperatures we have used the fact
that the two-spin correlation function g/(a, p, ) appear-
ing in the implicit equation for T, is bounded by a value

from above. The resultant phase diagram is shown in

Fig. 2.
A way to check if there is any antiferromagnetic chiral

state is to find (g;j/, ) for a shaded triangle (—= (g, )) and
an unshaded triangle (—:(g„)). Using a different type of
partitioning of the lattice I have shown that if there is a
chiral-symmetry breaking, the value of the order param-
eter satisfies the following relation: (g, ) = + (g„) for
a = + 1. Thus we find that the chiral order for a & 0 is
ferromagnetic. As far as symmetry is concerned it is the
same as the Kalmayer-Laughlin state. For a &0 the
chiral order is antiferromagnetic. The large chiral fluc-
tuations or the three-sublattice Neel order (if it exists) is

likely to make a nonzero critical value of e necessary for
chiral-symmetry breaking to occur in the ground state.
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FIG. 2. Phase diagram as a function of the strength a of the

next-nearest-neighbor coupling.

In a separate paper I have argued that chiral fluc-
tuations are the source of RVB state formation. The
fact that the Hamiltonian, for a (the nnn coupling =0),
becomes a simple sum —ggi~jk alone suggests that the
system will be dominated by chiral fluctuations at small
T. Also, long-range order in g;ik does not imply conven-
tional spin long-range order and indeed we have a rota-
tionally invariant phase. The neglect of time dependence
in our analysis makes it dificult to make a definite state-
ment about the nature of order in the ground state.
However, it is clear that the chiral fluctuations will

discourage any ordinary type of Neel long-range order
among the spins. Thus I believe that the low-tem-
perature chiral-ordered phase is a quantum paramagnet
or quantum spin liquid which we call a chiral RVB state.
As far as I know, the present paper is the first to show in

a physically rigorous way the existence of RVB states in

frustrated Heisenberg systems. The low-temperature
chiral RVB state is similar to the Laughlin state in the
sense that the sign of chirality is the same for any three
spins forming an elementary triangle.

It will be interesting to test the Kalmayer-Laughlin
wave function as a variational wave function for our
problem, particularly for a& I. Surprisingly, numerical
study of finite triangular-lattice systems with nnn cou-
pling does not seem to exist in spite of many works
(numerical and analytical) on the corresponding problem
in the square lattice. It will be interesting to check our
prediction of the chiral RVB state at low T and the asso-
ciated Ising phase transition. Using the formalism out-
lined in this paper, I have also studied ' the frustrated
square-lattice problem and found new local symmetries
and novel chiral phases.
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