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Dissipation in Macroscopic Magnetization Tunneling
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The eA'ect of magnetoelastic dissipation upon the tunneling and coherence of the total magnetization
in small (—100-A) single-domain ferromagnetic particles is investigated. Such tunneling would be an
example of a macroscopic quantum phenomenon. It is shown that the dissipation has a super-Ohmic
spectral density, J(tu) —tu, and that the dissipation is weak for reasonable material parameters.
Corrections to the rates, and the damping rate for coherent oscillations, are obtained. A key feature is
the inclusion of the elastic waves in the medium surrounding the particle.

PACS numbers: 75.60.Jp, 03.40.Dz, 03.65.Sq, 75.80.+q

Consider a small, single-domain ferromagnetic particle
at a temperature low enough to freeze out spin waves

due to crystalline anisotropy. At such temperatures, the
exchange interactions align the individual magnetic mo-

ments nearly perfectly, and the spontaneous magnetiza-
tion, M, is close to its saturation value, Mp, in magni-
tude. The only interesting degree of freedom left is then

the direction of M, and the question arises whether it is

possible to see quantum-mechanical effects in its dynam-
ical behavior. Since a sphere of radius a —50 A contains
about 10 -10 moments, such effects would provide
another instance of macroscopic quantum phenomena,
e.g. , tunneling and coherence (MQT and MQC, respec-
tively), which so far have been studied with any serious-
ness only for the rf SQUID and the closely related
current-biased Josephson junction. '

The issue of macroscopic magnetization tunneling
(MMT) was recently raised by Chudnovsky and Gun-
ther (CG) (see also Refs. 6 and 7), who observed that
both the barrier to tunneling and the mechanism for it
would be provided by the magnetocrystalline anisotropy
which is always present. Except for a few passing re-
marks, however, they have not considered the dissipative
effect of the environment, and it is the purpose of this

paper to do so. Dissipation generally suppresses quan-
tum effects, and it is therefore clearly desirable to assess
its importance for MMT before contemplating real ex-
periments. The only source of dissipation that we shall
consider in this paper is the magnetoelastic coupling of
M to the phonons. This is perhaps the most obvious in-

trinsic source, and is also the one mentioned by CG.
The setup for MQT consists of a biaxial crystal,

magnetized along an easy axis which we label x, and a
field H opposite to M. ' The Hamiltonian for M can be
taken to be the experimentally determined anisotropy en-

ergy itself since this guarantees the correct semiclassical
dynamics. In polar coordinates, the energy density can
be taken to be

E(8,&) = Kl cos 8+ (Kl+K2) sin Bsin p

—HMo(1 —sinBcosp),

]/2
gp 3(2 8Mp K ]
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and the small precession frequency in either well, m~„ is
given by (2 y/Mo) (K i K&e) ' to leading order in

Here, vo is the volume of the particle, and y=gptt/6,
with g being the g-factor and p~ the Bohr magneton. To
get a value of 5 for So/6, we need e —2x10 which
corresponds to tunneling through an angle of 7 or so,
and gives cop 10' sec ', and a tunneling rate of about
10 sec '. The results for MQC are very similar: So/6
is given by vo(2Mo/3A, y)(2e) t, and to~, by
(2Ky/Mo) (2e) 'l, with similar numerical values. ''

The chief result of our work is that magnetoelastic dis-
sipation is "weak, " having a strength characterized by a
dimensionless parameter a, given by

a = (KME/K) (amH/c, ) '. (4)

Here, KMF is what Kanamori [Ref. 8(a), Sec. 5j calls
the strain-induced anisotropy coe%cient, a is the radius
of the particle, AH =—yH„and c, is an average measure
of the sound speed. Since KMF/K is typically 10
—10, and acoH/c, is about 01, a is of order of
10 —10 . More precisely, we shall show that the rel-

with Kt 2) 0. The x direction (B=tr/2, &=0) is meta-
stable for H (H, =2Kt/M p.

The setup for MQC consists of a uniaxial or biaxial
crystal with an. easy axis labeled z, and H in the x direc-
tion (model II of Ref. 5). Now,

E(B,tlt) =Ksin 8 HMosinBco—sg+H Mo/4K, (2)

and for H (H, =2K/Mo, there are two degenerate mini-
ma at &=0, B=tr/2~lto, 8o=cos '(H/H, ).

As discussed by CG, in order to get an appreciable
tunneling rate, we must have e =—1 H/H, «1.—For spe-
cificity, we shall use the parameters they quote, K —Ki
—Kq —5x10 ergs/cm, Mo —500 G, and take a spheri-
cal particle of radius a =50 A. Then for MQT, in the
absence of dissipation, the WKB exponent, Sp/6, is

given by
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ative size of the dissipative correction to the WKB ex-
ponent is proportional to a with a proportionality con-
stant which is difficult to evaluate precisely, but can be
estimated to be of order unity.

In the presence of dissipation, the tunneling rate for
either MQC or MQT may be found by path-integral
methods developed by Leggett and co-workers. ' To do
this we need the action for M and the phonons. The im-

portant phonons are those with frequencies less than co~„
which can be treated via continuum elasticity theory.
We are thus led to consider the (Euclidean) action '

S[M(z),u(x, z)] =S [M]

J~d JI d (;;M„M —L. '),

where M is the direction of M, and u and u;i are the dis-
placement and strain fields. Sp[M] is the "bare" action
for M without dissipation, '
Sp[M(z)] =v p„[E(6,&) —Iy 'Mpcos8&(z)]dz,

and I.~"' is the Euclidean Lagrangian for the elastic de-
grees of freedom alone. Finally, a;~I,I is the magnetoelas-
tic tensor (a;ii, I =ai;.kl =a;lg, ). The fundamental quantity
to be calculated is S,i, the value of the action along the
"classical" or extremal paths. In terms of this, the tun-
neling rate (or the tunnel splitting for MQC) —cop

x exp( —S,l/6 ), where cop is (for moderate damping) a
small oscillation frequency (co&, in our case).

Since phonons with frequencies of the order of mz, typ-

S[q(z),u(x, z)] =vo Jr dz[ —,
'

mq + V(q)] —g, Jt dz J"
Here, g, =4a„„Mp, m equals Mp/2K2y for MQT,
Mp/2ICy for MQC, and V(q) is given by

~, (~q' —q'/4) (MQT),
(q)='IC(, , /2) (MQC) (8)

Note finally that since the relevant range of q is of order
E', we can ignore the fact that q is defined on a circle
and extend it to the entire line ( —~, +~). The prob-
lem is now reduced to that of a particle of mass m mov-

ing in a one-dimensional potential V(q), and coupled to
an oscillator bath. One (minor) bonus of this reformula-
tion is that the prefactor for the tunneling rate without
dissipation is known; this is 412 (Sp/2xh ) 'i

co~, for
MQT, and twice this value for MQC.

The next step is to integrate out the oscillators and ob-
tain the spectral density ' J(co). For phonon wave-
lengths X&)a, this can be done for any choice of elastic
constants for the particle and the surrounding medium.
The most crucial feature of J(co), however, is the power
law with which it grows as co 0. This can be deduced
simply by taking both the particle and the outside medi-

um to be identica/, isotropic, elastic media. ' DiA'erent
wave vectors k then correspond to diA'erent oscillator
modes, and the coupling constants ck, oscillator masses
mk, and frequencies col„as defined in Ref. 2(a) (with the
label a replaced by k) can be explicitly calculated. For
longitudinal waves, for example, m|, =p, cok=clk, and
cl, =g, vpk„k, h(ka)/k, where p is the density, ci is the
longitudinal sound speed, and

h (x ) =3 (s in x —x cosx )/x

The longitudinal contribution JI(co) is then given by

x t d'k
JI(co) =—J, 8(co —cik) .

2 (2~)' mkco„
(10)

This is easily evaluated, as is the transverse part J, (co).
Finally, J(co)=—JI +J, is given by

(vpg, ) ' h '(xi) h '(x, )+
5

S
4&p 15cI 10c

where x~ =coa/cl, etc. Note that since h(0) =1, J(co)

ically have wavelengths much greater than a, it is obvi-
ously insufficient to consider the phonons of the isolated
magnetic grain. The experimental conditions for MMT,
should they ever be realized, will almost certainly be
such that the grain is embedded in a nonmagnetic solid
medium. Hence, the Lagrangian LF"" should be chosen
so as to describe both the grain and the outer medium. '

In general, of course, this can be very complicated, par-
ticularly if there are large stresses at the interface, lead-
ing to local modes. In keeping with our goal of a low-
frequency description, and in order to keep the problem
simple, we will simply ignore these. We will take the
simplest choice for LE'", namely, one that leads to the
equations for freely propagating elastic waves in a uni-
form solid in each medium, and Newton's third law at
the interface.

Although it is now possible to formally integrate out
the phonons completely, and obtain an eA'ective action
for M alone, the resulting expressions are unwieldy and
not useful. For e«1 the classical path for M lies very
close to the x-z plane. ' The most important coupling
term in Eq. (5) is the one that differs most in the two
configurations between which tunneling occurs, i.e., the
a„, ,u, M M, term, since the M, term and the terms
involving M~ are small, a priori, and the M term is al-
most a constant, and has very little dynamical coupling
to the phonons in the course of the tunneling. To obtain
the tunneling exponent to leading order in t. it suffices to
drop all these other terms, further approximate M M,
by Mp cosO(z), and expand S to second order in p(z).
One can then perform the resulting Gaussian path in-
tegral over p(z). Denoting cos8(z) by q(z), and, keep-
ing only leading order terms in e, we obtain an action

d xqu„, + J dz& d xLg"'. (7)
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—co for small m. This is an example of "super-Ohmic"
dissipation, and cannot be characterized by a fre-
quency-independent friction coefficient. The factors of
h act as high-frequency cutoAs.

A better model is obtained by taking the inner sphere
to be a diferent, but still isotropic, elastic medium. The
calculation of J(ro) is now most simply done by using the
method of Leggett. ' One considers the real time [as op-
posed to the "imaginary' time variable ~ appearing in

Eq. (5)] dynamical equations for q(t) and u(x, t),
defines Fourier transforms,

q(g) = q(t)e '~'di, Imp&0,

and writes the equation for q in the form

K(g)q(g) = —V (g),

(i 2)

(13)

where V~(g) is the Fourier transform of dV/dq. Then

J(cv) = lim 1m[K(ro —ie)].
0+

(i4)

It is easy to see that if q(t) is regarded as a driving or
source term for the phonons, then the power lost at fre-
quency co is proportional to coJ(co) I q(ro) I

. ' The
source now produces elastic dipole radiation (both trans-
verse and longitudinal), for which, just as in the electric
dipole case, the power lost varies as co . It follows that
J(ro) —ro once again.

To obtain the scale of J(co), we Fourier transform the
inhomogeneous elastic wave equation obeyed by u(x, g)
over space. The integral equation so obtained can be
solved in the limit k 0. ' When this solution is substi-
tuted in the equation for q(g), the results for K(g) and
J(co) can be read olf. The net eA'ect of this procedure
is that Eq. (11) gets multiplied by a prefactor (I+@)/
(I +2ri), where

ri = (3+2e,2/cP) (p' —p)/15@, (is)

where p' and p are the adiabatic shear moduli of the
particle and the outer medium, respectively, and all other
quantities pertain to the latter. This prefactor is bound-
ed above by 35/8 (since c, /cl & 3/4) and is generally of
order unity. We do not known the precise form of the
cutoA, but we do not consider this to be important, and
in the following analysis we will simply replace the h

factors in Eq. (11) by e ', etc. , with coi =bcI/a, where
b —1 is some number.

The effective action S,ff[q] for q can now be written as
S0+S~, where S0 is the bare action, and

Sl[q] = droJ drv
2 Iq(co)I J(ro),

2n " 0 co(co2+ro )

where q(ro) is the Fourier transform of q(z). [This is a
simple rewriting of Eqs. (4.22-24) of Ref. 2(b).] In
general, one must solve anew for the extremal path of

Sb gc ~pr3 2'S i, I —Uo
135& pc12 co(2

(i8)

Sl, is similarly given. The factor g, /pc) more or less
defines KME, the strain-induced anisotropy coefficient
[see Ref. 8(a), Sec. 5]. Using Eq. (3) for So, it follows
that Sl/So is proportional (with a constant of order uni-
ty) to the dimensionless quantity a defined in Eq. (4).
The eN'ect of dissipation is thus to multiply the tunneling
rate by a factor exp( —Si/6). (We have not attempted
to evaluate the modification of the prefactor since this is
a much smaller eff'ect owing to the smallness of the dissi-
pation. )

For the case of MQC, one cannot, in general, define a
single "tunneling rate, " but must enquire about the full
dynamical behavior of M(t). Since the dissipation is
super-Ohmic and weak, however [see Ref. 3(b), Secs. 2,
3A, and 3B, and Appendix A], this behavior is a damped
oscillation at all temperatures much less than Aro~„/ke,
and the oscillation frequency h, can be computed in ex-
actly the same way as the tunneling rate of the MQT
problem. In other words, 6, is given by its value for zero
dissipation times a factor exp( —Sl/h. ). (Once again,
the modification of the prefactor is insignificant. ) In this
case, qo(co) =2in/roH sinh(+co/co~, ), and the final results
for Sl are very similar; e.g. , the 8 in Eq. (18) becomes a
4. It is also of interest to ask for the damping rate of
these oscillations. This is found from Eq. (3.11) of Ref.
3(b) to be of the order of voKME(ha/c, ) coth(Phd/2).
For the parameters we have been using, this is about 100
sec ' for kg T ((Ah, .

We conclude this Letter by noting that for nonspheri-
cal particles, an important contribution to E(0,&), which
has been omitted in all the above analysis, is the shape
anisotropy (or demagnetization) energy Ed, . For ellip-
soids,

Edc;m =
2 (W, M, +1VpMb +1V,M, ), (i9)

where a, b, c are, the axes of the ellipsoid, and N„etc.,
are the demagnetization factors, normalized to add up to
4x. Equation (19) continues to hold for uniformly
magnetized samples of any shape, ' but the principle
axes a, b, c, of the N tensor are now not simply
specifiable. The eff'ective anisotropy coefficient is of the
order of nM0, which for M0 —500 G is about 8 x10
ergs/cm, which is not negligible compared to K, Kl, etc.

S ff[q], but if the dissipation is weak, one can use the
path found in its absence, qp(z), to estimate Sl in Eq.
(16). We shall see that this approach is justified for the
present problem. It is easily shown that for the MQT
problem, qo(z) =2Jesech(co~, z), so that

qo(co) = (2n Je/co~, ) sech(neo/2'„, ) .

The integral in Eq. (16) is then easily evaluated, and its
longitudinal part S i, l is
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This contribution to the energy has the effect of mis-

aligning the easy and hard axes of magnetization from
the crystalline axes. While all our calculations are for-
mally valid with the understanding that the applied field
is perpendicular to the new easy axis for the case of
MQC, or along it for MQT, it is clear that producing
these configurations can be a vexing experimental com-
plication if one does not have some way of determining
the magnetic axes as opposed to the crystalline axes.

We are indebted to W. P. Halperin for several helpful
discussion s.
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