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A new method of analytic continuation from a Matsubara single-particle Green’s function to a spec-
tral function is presented. We recast this problem onto a new one where we dynamically minimize a
suitably defined potential. Our method allows the imposition of physical constraints such as smoothness
and adherence to the sum rule. The method is applied to the symmetric Anderson impurity model. We
show how the spectral function changes with the Kondo temperature Tk, the hybridization width A, and

the Coulomb potential U.

PACS numbers: 71.10.+x, 71.55.—i

In recent years various advances have been made in
the area of quantum Monte Carlo simulations.'™ These
methods allow one to directly determine the static, but
not the dynamic, properties of the systems being simulat-
ed. The reason is that the Monte Carlo simulation pro-
vides data along the imaginary-time direction, while to
understand the dynamic properties the imaginary-time
data must be analytically continued to the real axis.

Thus, a reliable method to analyticaly continue a
single-particle Green’s function tabulated at imaginary
Matsubara frequencies to a spectral function of real fre-
quencies is needed. Previously, analytic continuation has
been approached either by Padé approximation* or by
least-squares fitting.> The Padé method suffered from
sensitivity to noise in the data and the accumulation of
round-off errors due to the finite precision of the comput-
er. The least-squares method was less sensitive to these
problems; however, it provided results which were only
qualitatively correct.’

In this Letter we present a new technique of analytic
continuation. We demonstrate that analytic continua-
tion from the imaginary-frequency Green’s function to
the real-frequency spectral function is equivalent to the
minimization of a suitably defined potential.

We find this potential, and then introduce an artificial
dynamics which flows towards the minimum of this po-
tential. This process is insensitive to the accumulation of
round-off error and to moderate amounts of noise in the
data. We chose a dynamical approach since it allows us
to impose physical constraints on the resulting spectral
function in a nonlinear way. In particular, we enforce
the spectral density sum rule and uniform positivity as
nonlinear constraints. We also impose a linear con-
straint that eliminates wild fluctuations which can result
from noisy data.

We have successfully applied this method to the sym-
metric Anderson model. However, to demonstrate the
usefulness of this approach, we first present the results
for a toy model with features similar to those of the An-
derson model. The spectral function of this toy model is
composed of a central peak and two side peaks (Fig. 1).
For the toy model the single-particle Green’s function of

imaginary Matsubara frequencies can be calculated ex-
actly. The resulting data, with noise added, are analyti-
cally continued to a spectral function of real frequencies.
The resolution of this method is demonstrated in Fig. 1.
Note that the essential features are relatively unaffected
by as much as 10% added noise.

In Figs. 2 and 3 we present the spectral function of the
symmetric Anderson model. The Matsubara-frequency
data were obtained from a determinantal Monte Carlo
algorithm developed by Hirsch and Fye.! In Fig. 2, the
symmetric-Anderson-model spectral function for T
=0.025, U =6.0, and several different Tk’s is presented.
Note that the central peak becomes higher and narrower
as Tk increases. In Fig. 3, the symmetric-Anderson-
model spectral function for 7x =0.02 and two different
values of U is presented. Note that the side peak is cen-
tered roughly at U/2.

Our method is based upon the spectral representation
of the Green’s function,

Gl = [~ AWy, (1)
— v, —

Here, G(iv,) is a single-particle Green’s function, v,
=(2n+1)nT, and A(w) is the corresponding spectral
function. We discretize the spectral function by expand-
ing it as a series of & functions, A(w) =X, = A
x8(w — wn), and choose the real frequencies on a regu-
lar grid of spacing Aw. In this paper we concentrate on
the particle-hole symmetric case where A(w) =A(— ),
although the method applies to the nonsymmetric case as
well. For the particle-hole symmetric case, where
ReG (iv,) =0, Eq. (1) reduces to

mGlv) __ 5 A gt x2..@
Vn m=—oc W+ Vi

In order to find the spectral function, we consider {4}
as a set of dynamical variables evolving in an artificial
time 7. This dynamics evolves towards the minimum of a
potential where the {A,,} are the solution to Eq. (2). In
order to define this potential we take the real-frequency
grid to be the same as the imaginary-frequency grid, i.e.,
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The potential then takes the form®

Wy =V,.

vi{a,) =v, {4, +v,(4,D) 3)
where

_ ImG(Giv,) 41 A A,y

vi4,b) %——~Vn 3 2,‘,” PR 4)
and
V2({4,}) =Cs [ZA,,—I]"

+CGZ(A,;—|"2A,,+A,,+1)2/(A(0)4. (5)

The term V({4,}) is constructed such that minimiz-
ing it is equivalent to solving Eq. (2). ¥V ({4,}) is a
quadratic potential in an infinite-dimensional space of
{4,} which has a unique minimum.” In some directions
this minimum can be very shallow; therefore, any devia-
tion of A, in these directions will barely change the po-
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2+2
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+4 A
ot Vn m=— Cs [Z

We integrate these equations from ¢ =0 until they con-
verge to a fixed point, where 8A4,/9t=0. Then the re-
sulting set {A,,} defines the desired spectral function.

One can also choose the real-frequency grid to be dif-
ferent from the imaginary-frequency grid. In this case it
is not possible to define a potential; however, we find that
the dynamical equations (6) still flow to a single fixed
point, and this corresponds to the proper solution of the
analytic continuation. This is a unique property of our
dynamical approach. It allows us to find the spectral
function even when a potential does not exist. Since the
real-frequency grid can be chosen arbitrarily, we can
make it finer in regions which need better resolution.
However, in this paper we do not use this option.

In practice, we consider only a finite number L of
equations according to the number of points at which
G(iv,) is evaluated. The real-frequency grid is chosen
such that it will have the same number of points L and
still include the region of interest. Initial values of A,
can be chosen with some arbitrariness so long as they are
not too large. However, we find it best to choose them so
that they are all equal and satisfy the sum rule. For p,
the exponent of the sum-rule constraint, we found that
all even powers between 2 and 6 work well; however, we
found 4 to work best in that it allowed the imposition of
the sum rule to almost arbitrary accuracy with negligible
residual forces. The parameters Cs and Cg; are in-
creased from zero until the sum rule is satisfied and
smoothness is obtained. In addition to imposing the con-
straints, these terms make the net potential less shallow,
resulting in faster covergence to the minimum. Typical
values of these parameters for the Monte Carlo data are
Cs=0.03 and C; =0.001. We find that further small in-
creases of Cs and Cg do not change the results. We then

i

tential. Therefore, an equivalent small change in the
G (iv,) data can cause a large change in 4(w); thus, the
difficulty in obtaining the spectral function A.

The first term in ¥,({4,}) is constructed such that
minimizing it will impose the sum-rule constraint
J2wA(w)dw=1, while the second, Ginzburg-type, term
inhibits spurious fluctuations of 4 due to noisy data by
making discontinuities in A(w), or its derivative, ener-
getically unfavorable. The exponent p can be any even
power, and Cs and Cg are chosen so that once these two
constraints are imposed, V,({4,}) is negligible, and
Vl({A,,}) dominates. In addition, we do not allow any of
the set {4,} to become negative. This amounts to the
addition of a set of barrier potentials which become
infinite if any of the {4,} become negative.

The force conjugate to A4, is fn=—0V({4,})/84,.
Our dynamics corresponds to a system of massless parti-
cles with dissipation. Thus, the dynamical equations of

motion are
2C;(A,-2—4A4,-+6A4,

(Aw)*

—4A, 1+ An+2)
+1 *2) ()

solve the set of dynamical equations (6) using a standard
method such as fourth-order Runge-Kutta until all
forces become smaller than some predetermined parame-
ter =10 ">, which must be smaller than the measured
error in G(iv,).

The convengence is fast. Generally, for a set of sixty
Matsubara frequencies, convergence takes about one
minute on a VAX 8600 with single precision. After con-
vergence is obtained, one must examine the contributions
of the forces associated with the V', term, and make sure
that they are smaller than the error bars of the Monte
Carlo G (iv,). We always found this to be the case. One
can consider these contributions as a correction to the
Monte Carlo data. In the toy model discussed below, we
found that the residual forces due to V', tended to correct
for the random error introduced into the data.

We first apply this method to a toy problem where the
spectral function is composed of three squared Lorentzi-
an peaks.® One peak is located at the origin with weight
0.55 and width 0.5, and the other peaks are located
symmetrically away from the origin at @ = % 2.0, with
weights 0.225 and widths 0.5. For this model, G(iv,)
can be obtained explicitly. In order to imitate the way
Monte Carlo data are processed, we Fourier transform
G(iv,) to G(t), where t is defined on a grid from 0 to
B=1/T, T=0.02, of width Az=0.25, such that LAt=g.
We then Fourier transform this discrete data to the first
L Matsubara frequencies. We then add noise to G(iv,)
by multiplying each datum by 1+2Cpeise (R — ¥ ), where
R is a random number between O and 1. In Fig. 1 we
present the exact spectral function (solid line) along with
those for Choise =0.02 (dashed line), 0.05 (dotted line),
and 0.10 (dot-dashed line). The important feature is
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FIG. 1. Comparison of exact and analytically continued re-

sults. The exact result (solid line) consists of three squared
Lorentzian peaks (Ref. 8), one centered at the origin with
weight 0.55 and width 0.5, and the other two at w= % 2.0,
with weights 0.225 and widths 0.5. Only positive frequencies
are plotted since the data are symmetric. The data were pro-
cessed to imitate Monte Carlo data with A7r=0.25 and
7=0.02. The analytically continued data have 2%, 5%, and
10% random noise added (dashed, dotted, and dot-dashed
lines, respectively).

that, while the side peaks change slightly, the central
peak remains relatively unaffected.

We also found that, for a given temperature, the reso-
lution of our calculation depends crucially upon At
=p/L. For example, in this toy problem, we were able
to resolve a central peak of width 0.5 when Az=0.25.
However, to resolve a sharper peak of width 0.1, for ex-
ample, one should take Az to be smaller.

We applied this method to the symmetric Anderson
model of magnetic impurities. We generate the Green’s
function of Matsubara frequencies using a quantum
Monte Carlo algorithm discussed by Hirsch and Fye.!
In this simulation the problem is cast into a discrete
path-integral formalism in imaginary time, t;, where
7;=IAt, Atr=p/L, and L is the number of time slices.
At each measurement step we measure both G(r;) and
the first L values of its discrete Fourier transform
G (iv,). The standard deviation, and the systematic er-
rors associated with the finite value of Az, for G(iv,)
were each estimated to be of order 1% for the data in
Fig. 2 and 2% for Fig. 3.°

The Anderson model, in the limit of infinite metallic
bandwidth, is characterized by a hybridization width
A=rxN(0)V? [where V is the hybridization matrix ele-
ment, and N(0) is the density of states at the Fermi sur-
facel, an on-site repulsion U, and a Kondo temperature
Tx =0.364(2AU/x) /2e ~7U/82 1011 1y Fig. 2 we show
the spectral function of the symmetric Anderson model
when U=6.0, T=0.025, and A7r=0.25 for various
values of A and associated Tk’s. One expects that the
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FIG. 2. Spectral density function for the symmetric Ander-
son model when U =6.0 and 7 =0.025 for various values of A
and the corresponding T'x’s when A7 =0.25. Note that the cen-
tral peak width grows with Tk, and the height grows with 1/A.
This behavior is expected in the limit 7/7Tx-— 0 where the
Friedel sum rule applies (Ref. 12). The side peaks shift to-
wards the origin as the central peak becomes more pronounced
(Tx becomes larger) as expected from perturbation theory
(Ref. 13). We estimate the vertical statistical error bars to be
= 0.02 (Ref. 9).

width of the central peak should be of order Tk, which is
smaller than the resolution of our calculation at the
given values of T and Atr. Nevertheless, note that the
width of the central peak increases with Tk, and that the
height increases with 1/A. This behavior is expected in
the limit T/Tx— 0 where the Friedel sum rule'? ap-
plies. The side peak associated with the f'— f? transi-
tion is located roughly at w =U/2 with width = 2A, in
accord with results from a 1/N expansion.'* The side
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FIG. 3. Spectral density function for the symmetric Ander-
son model when Tk =0.02 and 7'=0.025 for two values of U
and A when A7=0.25. Note that the side peak is always locat-
ed at roughly U/2 with width = 2A. We estimate the vertical
statistical error bars to be = 0.03 (Ref. 9).
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peaks shift away from the origin as the central peak be-
comes more pronounced (i.e., Tx becomes larger). This
behavior is expected from perturbation theory.'> The lo-
cation of the side peaks is illustrated further in Fig. 3.
In this figure the spectral function is plotted when
T =0.025 and A7=0.25 for two different values of U and
corresponding values of A chosen so that Tx =0.02. In
each case the side peak is located at = U/2, and has
width = 2A.

In conclusion, we have presented a method of analytic
continuation of a single-particle Green’s function of
Matsubara frequencies to a spectral function of real fre-
quencies. The essential feature of our method is the
equivalence of analytic continuation and the minimiza-
tion of a potential. We minimize the potential by an
iterative dynamic process constrained to produce a spec-
tral function which is smooth and satisfies the sum rule.
As a result, our method is less sensitive to noise than pre-
vious techniques, works over a wider temperature range,
and is insensitive to the accumulation of error due to
finite numerical precision of the computer.

While in the final stages of this work we received a pa-
per from White et al.!> describing a similar method.
The primary differences are that they directly analytical-
ly continue the imaginary-time Green’s function® with a
weighted least-squares method.
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