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A theoretical groundwork has been laid for modeling doping diffusion and distribution in semiconduc-
tor heterostructures. The driving force for the diAusion of a dopant is no longer simply given by its con-
centration gradient as in homogeneous semiconductors, but by the gradient of its chemical potential that
derives from several contributions to the free energy of the solid solution, including two sources of strain
energy and the variation of band gap with the composition of the heterostructure. Expressions for
dopant flux and segregation are given.

PACS numbers: 66.30.Dn

More than forty years ago the heterojunction transis-
tor was conceived for performance advantages. ' New
developments in processing technologies in the last
several years have brought a surge of industry-wide ac-
tivities aimed at its realization. Much attention has been
given to the important issues of pseudomorphic epitaxial
strain and misfit dislocations, and band oA'sets at hetero-
junctions. An important topic that has not received any
attention concerns the diA'usion and segregation of
dopants in the heterostructures. Here we will address
this issue by setting up a theoretical basis for the under-
standing of such behavior. This theoretical basis is

essential for the prediction and the control of dopant dis-
tribution in the fabrication of heterojunction devices.
We will make special reference to the heterostructure of
a germanium-silicon alloy, Ge„Si], grown epitaxially
on a silicon substrate, a heterostructure that accommo-
dates the desire, for compelling reasons, to stay with the
silicon technology. As the analysis is quite basic and the
results physically intuitive, readers with interests more
general than the heterojunction may also benefit from
reading on.

The segregation and the driving force for the diAusion

of a dopant in a heterostructure are determined, respec-
tively, by its electrochemical potential (hereafter simply
called "chemical potential" ) and by the gradient of this
chemical potential. Let N be the number of atoms per
unit volume of the solid solution. The chemical potential
of the dopant, solute species l, is given by the partial
derivative of the free energy of the solution with respect
to N]. In a homogeneous semiconductor, the chemical
potential of a dopant derives mainly from two contribu-
tions to the free energy of the solid solution: the usual
configurational entropy, and the electronic energy
through the ionization of the dopant atoms; it is givenb'

p ~

=k T ln (N ~ /NI ) —Z ~ k T ln [(1+ g)/(1 + g* ) ]

—kTln(1 —N~/Nl ),
where NI is the concentration of lattice sites. The last
term in Eq. (1) is usually negligible. Neglected from Eq.
(1) is the eAect of dopant-atom clustering, which be-

p) =kTln(N&/Nz)+kTln(N]/n;) . (3)

When there is more than one dopant present, the second
term on the right-hand side of Eq. (3) should, in the lo-
cal charge-neutrality approximation, be replaced with

Z~ sgn(Z„N„)kTlnf, where f is given by

&1+ l+
2fli

(4)

where Z„ is the charge state of the nth dopant ion, and
sgn(y) denotes the sign of argument y. Expression (4)
also takes care of the situation in which

~
Z„N„~ &&n;,

such as in the neighborhood of a pn junction.
In a heterostructure containing a layer of, for exam-

ple, Ge Si] „, there are two complications. The first is
that the band gap and the eAective densities of states
(or the carrier efT'ective masses) in the conduction and
the valence bands vary with the alloy composition x, and
hence with location. This aFects n; in Eq. (3). Further-
more, the Fermi level is usually evaluated in reference to
some other energy level, such as the valence-band edge,
of the same material. In a heterostructure, a material-

comes appreciable at concentrations exceeding a few
10 atoms/cm . The entropy from the eAect of solute
atoms on lattice vibrations has also been neglected. In
the second term, due to dopant ionization, Z] is the
charge state for the dopant ion, and g is given by

g=g~ exp[(E ) EF)/kT]—, (2)

where g~ and E~ are, respectively, the degeneracy factor
and the energy level of the dopant electron state, and EF
is the Fermi level. The asterisk denotes the intrinsic con-
dition. For simplicity, we will consider here systems in

the nondegenerate condition, which is appropriate for the
base region at diAusion temperatures. Then the second
term on the right-hand side of Eq. (1) is approximately
given by Z~(EF —E;), where E; is the intrinsic Fermi
level; it may then be considered the electrostatic part of
the chemical potential of the fully ionized dopant ion.
For N] »n;, where n; is the intrinsic carrier concentra-
tion, we have EF —F.; =Z~kTln(N~/n;), and Eq. (1)
reduces to
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independent reference, such as the vacuum level, must be
used. A proper reference is the ideal work function
which is defined as the energy difference between the
vacuum level and the Fermi level in an uncharged solid.
In practice the work function is usually defined opera-
tionally as the work required to remove an electron from
a solid in vacuum to a remote point; it is thus affected by
the charge distribution at the solid surface. We shall as-
sume that the ideal work function is available, and define
an intrinsic work function 8'; for a material in which the
Fermi level is E;. The electron chemical potentials in

two isolated intrinsic materials 4 and 8 diff'er by an
amount equal to W;(A) —W;(8). When they come into
contact, some electrons will change hand, until an elec-
trostatic potential difference between them builds up to
P = [W~(B) —W~(A)]/q, thereby equilibrating the elec-
tron chemical potentials between them. Doping adds
another contribution to the electrostatic potential; this is

already accounted for by the second term on the right-
hand side of Eq. (1). To be general, we include a term
AEb)(N2) representing the difference between the bond
energy of the unionized dopant atom in the local phase
and that in a reference phase (in which N2=0, e.g.).
With these considerations, Eq. (3) is modified to

Ni
p~ =kTln —Z~hW;(N2) BEb~(N2)+—kTlnN~

N

+ —,
' Eg(N)) ——,

' kT in[Np(N))Ni (Np) j . (5)

In Eq. (5), only Eb ~ is dopant specific. 8;, Fb ~, the band

gap Eg, the conduction- and valence-band densities of
states N~ and Ny are all functions of the germanium
concentration N2 (or the alloy composition x). They will

also be affected by the epitaxial strain; the strain effect
will be considered separately. The work-function dif-
ference can be taken between the local phase and the
phase with N2=0. The work functions for silicon and
germanium, measured with an accuracy no better than
+ 0.2 eV, appear not significantly different. One would

expect, from the trend of work functions of group-IV ele-
ments, that the germanium work function is slightly
smaller, perhaps by some 0.2 eV. For our purpose, the
work function may be assumed to vary linearly with the
alloy composition. This would track the reported '
trend of valence-band offset in the Ge Si& „alloy. This
term aff'ects donors and acceptors in opposite directions.
No data are available on bond energy versus alloy com-
position. In general, we would expect the bond energy to
be smaller in a germanium-rich phase. Hence, the bond-

energy term, in contrast to the band-gap term, tends to
drive both donors and acceptors away from a germa-
nium-rich phase. The sum of the last two terms in Eq.
(5) is just —kTln(n; ), expressing n; (Nz) in more easily
measured parameters. Eg decreases rather linearly with

x between x =0 and 0.3, with BEg/BN2 = —(0.45 eV)/
Nl (N2 =xNL ). Eg also decreases with temperature;
the decrease is only slightly dependent on x between 0

and 0.3. In a system having more than one dopant, Eq.
(5) can be modified by replacing the last three terms
with Z~ sgn(Z„N„)kTlnf, and relating n;(N 2) through
the last two terms of Eq. (5). When

~
Z„N„~ &&n;, we

need only to replace the fourth term on the right-hand
side of Eq. (5) with Z„sg n (Z„N„)k Tln

~
Z„N„~ .

The second complication is the strain energy of the
solid solution. Two kinds of strain exist in the pseu-
domorphic epitaxial films: the microscopic internal
strain and the macroscopic external strain. The internal
strain arises from the replacement of some host atoms
with solute atoms of a different size. A number of semi-
nal elasticity-theoretic analyses'' ' are applicable for
the continuum approximation of the problem: A solute
atom, idealized as a spherical inclusion of a radius
ro(1+8), squeezes into a spherical cavity vacated by a
host atom of radius ro, and the two settle on a common
radius ro(1+8'). The strain energy associated with an
inclusion consists of two parts: the uniform deformation
of the inclusion and the nonuniform deformation of the
matrix surrounding it. Both parts can be easily calculat-
ed. ' The difficulty arises, when the density of solute
atoms is very high, that the strain energy due to each
solute atom is no longer additive. This is because the
strain originating at individual solute atoms is linearly
additive, while the local strain energy is quadratic with
the local strain. The local strain energy in a volume ele-
ment dv is given by

de= & cti I idv, (6)

where t. ; are the strain-tensor components in the one-
suftix matrix notation, c,z are the stiffness constants, and
the right-hand side represents a sum over repeated sub-
scripts. Equation (6) must be integrated over the entire
volume. If the matrix and the inclusion share the same
elastic constants, the displacement at position R exterior
to the inclusion at R =0 is given by'

where v is Poisson's ratio (0.27 for silicon), and the
bracketed term is the "strength" of the elastic potential.
An appropriate image field needs to be added to take
care of the free boundary condition. ' ' The strain field
can easily be obtained from Eq. (7). However, in a solid
solution containing many solute atoms, there exists the
problem of integrating over a domain riddled with singu-
larities. ' A second, but less serious, problem is that the
continuum theory of elasticity will surely break down in

the immediate neighborhood of the atomic-sized in-
clusion. Thus, from Eq. (7), the radial displacement of
the nearest host atom, centered at R =(2+8)ro, is about
0.1456ro. This is substantially less than 0.416'ro calcu-
lated from a first-principles wave-function approach. '

The discrepancy is anticipated since the elastic constants
of all materials rise with compression. ' But there is

more to the origin of this discrepancy. It is merely an
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expediency to name the solute atom as the inclusion. We
could just as well consider the inclusion to be, for exam-

ple, a cluster comprising the solute atom and its four
nearest-neighbor solvent atoms, or just the halves of
these nearest-neighbor atoms. In this latter choice, we
would have an inclusion of radius (I+8/2)2ro, forced
into a cavity of radius 2ro. The displacement of the
nearest neighbor is then 0.586ro, a factor of 4 increase.
The strain energy is also affected by this conceptualiza-
tion of the inclusion, but by a factor of 2.

The problem simplifies at high solute densities, whence
the strain fields around individual solute atoms overlap
substantially, giving rise to a substantially uniform
change of the lattice constant, ' ' ' ' a phenomenon
known empirically as Vegard's law. Since the defor-
mation is uniform in all directions, t ] =t'2=63=const,
and the nondiagonal tensor components vanish. The
work done by the solute atoms in expanding the lattice is

then easily obtained from Eq. (6): Wz = —', (c~~+2c~2)e~
for cubic crystals, or —', Kei for isotropic media (K is the
bulk modulus, about 1.1 x 10' dynes/cm for silicon). A
simple extension of Vegard's law gives e~ as P„N„, where

P is the lattice contraction (negative) or expansion (posi-
tive) coefficient, the subscript n denotes the solute species
(say, 1 for the dopant and 2 for germanium), and
Einstein s summation convention again applies. Some
experimental data on P for a number of relevant solutes
in silicon are as follows: for boron, —4.5&&10 cm /
atom; ' for phosphorus, —1.8&&10 cm /atom; ' and
for germanium, +0.71 x 10 cm /atom (see also
Ref. 23). It has been reported that doping with arsenic
causes a contraction of the silicon lattice, contrary to the
prediction based on covalent bond length; but the magni-
tude is small and can be neglected.

A heterostructure, for example, a Ge„Si t layer
grown epitaxially on a silicon substrate, additionally con-
tracts an externally induced strain. The Ge„Si] layer,
below a critical thickness, is forced to adopt the lattice
constant of the silicon substrate as its lateral lattice con-
stant, while the vertical direction is allowed to expand
freely. If all three dimensions of the epitaxial layer are
constrained, the strain energy of uniform expansion as
derived above would vanish, and microscopic internal
strain would take its place, resulting in a higher internal
energy. The microscopic strain energy is difticult to cal-
culate. However, since elastic deformation, by definition,
is a nondissipative, completely reversible process, we can
construct a sequence of process steps to arrive at the final
state, and sum up the energy expenditures of all steps in-
volved. The energy of uniformly deforming the lattice
by the solute atoms has already been given in the preced-
ing section. The solid solution is next compressed along
the two lateral dimensions until these match that of
an imagined substrate. This produces an external lat-
eral strain of —P„N„, and an external vertical strain of
—(2c ~ &/c ~ ~ )I3„N„, or (P„N„)2v/(1 —v). The energy
associated with this external straining is (c~~+2c~q)
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x (I —c ~2/c ~ ~ ) (P„N„), or [3K(1 —2v)/(1 —v)]
&& (P„N„) . Combining the strain energies from the
internal and the external origins, one obtains the strain
contribution to p] as

(p~),t„=P~(c~~+2c~2)(5 —2c~2/c~ ~)P„N„, (8)

or P~3K[(5 —7v)/(1 —v)]P„N„ for isotropic media. In
deriving Eq. (8), we assumed r)c;~/r)N~ to be negligible.

An important question must now be asked and
answered: Are there any other contributions from the
lattice strain to the free energy of the solid solution?
The first to come to mind is the deformation potential
which aAects the chemical potential of electrons, and
which has been proposed to vary linearly with strain.
Indeed, significant band-gap narrowing, additional to
that caused by the alloy composition, has been reported
for epjtaxjally strajned GexSj] —~. We shall argue
below that the correct answer is no.

As are all causal relationships of physical laws, the
free energy of a defined part of the lattice as a function
of relative atomic displacements must be analytic within
the domain in which such a functional relationship ex-
ists. Therefore, we can express the free energy of the
part of the lattice of interest in a Taylor series in terms
of strain. Let F(e;) be the free energy of the defined
part of lattice (for given Ni and Nq). We can write

1 6 F+- E E +
2 BEI 6Eg.

(9)

N

. Nz (NcNv ) i

+ —, Eg (N2) + Opi p2N2+ Op i N i,

—Z ) A W; (N2) —AEi, ) (N2)p] =kTln

where 0 =9K for free standing Ge Si] films, and
0=3K(5 —7v)/(1 —v) for epitaxially strained films. To
find the segregation coe%cjent of dopant 1 between the
alloy film and the silicon substrate, we equate p] between
the two phases. The last term in Eq. (10) introduces a
concentration dependence of the segregation coefficient.
For N] & 1 x 10 cm, this affects the segregation by a

where all derivatives are evaluated at e; =0 (i =1 to 6).
For a given crystalline structure, F(e;) is minimum at
t. ; =0; otherwise the atoms would spontaneously rear-
range themselves. Therefore, all the first derivatives of F
with respect to e; must be zero, and all the second
derivatives must be positive. All terms higher than the
second order drop out for su%ciently small t.;. One can
identify the second derivatives in Eq. (9) as the elastic
stjA'ness constants c;~. The sum of the second-order
terms is hence just the strain energy, and it is inclusive of
all kinds of energy affected by strain.

We can write the chemical potential of species 1 as
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exp

factor (exp[( —0.009 eV)/kT] for boron, and even less for phosphorus. Therefore, provided iP2N2i » iPiNi i, as is
appropriate for the system under consideration, the last term in Eq. (10) can be dropped. Then we obtain the segrega-
tion coe%cient k„g and the diffusion flux J] as

Nt- (N2)Ny(N2) 2Z i& W; (Np) + 2&Et, i (N2) +Eg (0) —Eg (N2) —26pi p2N2

Nc (0)N y (0) 4kT

kT 8x

BN| DiN|= —2D] +
Bx 2

BNc I BN 2 BS; BEbi 1 BE BNp+ + Z i + —— —OP|p2
Ng GNAT Nt BN kT 9N BN 2 BN Bx

(12)

where Di is the diffusivity of the dopant. The first term on the right-hand side of Eq. (12) is the familiar diffusion term
for a single dopant, with the factor 2 coming from the internal field (for Ni »n;). In a system containing more than
one dopant, one can write in place of Eq. (12)

BNi
Ji = —D]

Bx
DAN] Bf BN„Bf Bn; BNg Bn; BNy Bn; BEg BN2+ + +f, 2 BN„Bx Bn; BN~ BN2 BNy BNq BE BN2 Bx

D]N] 98; BED]+ Z] +
kT QN2 BN2

9N2
()PiP2

Bx
(13)

The use of Eq. (13) [or Eq. (12)] for the calculation of
diffusion profiles will automatically take care of the
eAect of dopant segregation in heterostructures.

In summary, we have analyzed the problem of dopant
segregation and diA'usion driving force in inhomogeneous
media, in general, and in Ge Sii heterostructres, in

particular. Expressions have been derived which can be
used for modeling dopant diAusion in such media, an ur-

gent need in the development of heterostructure devices.
Several factors aff'ect the chemical potential of a dopant
in a heterostructure. Among these only the band-gap
change and the lattice strain versus alloy composition
have been measured with sufticient accuracy. The
remaining parameters will have to be deduced from mod-
eling and diff'usion data. It should be noted that impor-
tant issues concerning diAusion processes in heterostruc-
tures also include the understanding of how D] is
aAected by the alloy composition. We leave this topic
for a future study.
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