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New Many-Body Potential for the Bond Order
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An analytic many-body potential is derived for the bond order of s-valent systems which allows the
influence of the local atomic environment on the bond strength to be determined directly. The impor-
tance of the three-membered- and four-membered-ring terms on the topology of four-atom clusters is

demonstrated. The simplicity of the potential's analytic form will allow the much used embedded-atom
potentials to be extended to include explicit three-body and four-body terms.

PACS numbers: 61.45.+s, 61.50.Lt

The last few years have seen rapid progress in the de-
velopment of semiempirical many-body potentials for
atomistic simulation. The simplest, the embedded-atom
potentials, ' have been successful in modeling the fcc
noble metals and aluminum, and their alloys. The form
of these embedding potentials may be justified either
within eAective-medium theory or within the second-
moment approximation to the local electronic density of
states. The modeling of open tetrahedrally coordinated
semiconductors requires the inclusion of explicit three-
body and four-body terms. The analytic behavior of
these many-body terms for semiconductors and transi-
tion metals has been studied using a moment expansion
within a localized tight-binding basis. However, since
this N-body expansion of the total energy is derived per-
turbatively with respect to some reference medium,
many-body potentials which are fitted to bulk properties
may lead to very poor predictions for the binding and
topology of small atomic clusters.

Recently Chelikowsky et al. ' have shown that it is
possible to fit both the bulk and cluster geometries of sil-
icon with a suitably chosen bond-order potential. Bond-
order potentials are similar in spirit to embedding poten-
tials in that the bond between the given pair of atoms is
considered embedded in and dependent upon the sur-
rounding matrix. ' ' In this Letter an explicit many-body
potential for the bond order between valence s orbitals is
derived theoretically for the first time, and the impor-
tance of the three-body and four-body contributions to
the topology of four-atom clusters demonstrated.

The total binding energy of a collection of s-valent
atoms may be written in the form ' '

U= —,
' g &(R;&)+ —,

' g h(R;i)B;i, (1)
i,j Ai ij Ai

where N(R;i ) is the repulsive interaction energy and
h (R;i)H;i is the attractive covalent bond energy between
atoms i and j. h is the ssa bond or hopping integral and

B;j is the bond order which is defined to be the diff'erence
between the number of electrons in the bonding
(1/J2) I p;+tltI) and antibonding (1/J2) I tt; —

pl& states.
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and
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H

I tt„)=b„+1 .

Thus, the Hamiltonian with respect to the bonding
and antibonding recursion basis may be characterized by
the semi-infinite linear chain' with site diagonal ele-
ments a„—and intersite hopping matrix elements b„+i,
namely

For the isolated dimer with one valence electron per
atom the bond order of the singlet state is clearly 2.
However, as we will see, the bond order will be reduced
if the isolated dimer is embedded in a surrounding atom-
ic matrix.

TersofI" and Chelikowsky et al. ' assumed particular
forms for the bond-order dependence on the neighboring
atomic environment. Here we will derive its analytic
dependence explicitly by using the recursion method' to
write the bond order as an integral over the difference of
two continued fractions:

REF
8;i = ——Img [Gpp(E) —Gpp (E)jdE, (2)

where the factor 2 outside the integral sign accounts for
spin degeneracy. Im is the imaginary part of the bond-
ing and antibonding Green s functions which are given
by
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determined by the Lanczos' recursion algorithm, name-
ly
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with the boundary condition that
I u:1) vanishes. The

Hamiltonian H is, therefore, tridiagonal with respect to
the recursion basis
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From Eqs. (4)-(6) the first three recursion coefficients
take the values

a(1
—=+ h(R;, ),

(b1—) = —,
'

(@2+@A)+ g h(R;k)h(Rk~),
k &i,j

(7)

(8)

+ g h (R;k )h (Rk() h (R1~ ), (9)
k, l wi,j

where p2 and p3 correspond to the second and third
moments about the site i (j) in which the direct path
linking the bond ij is excluded from the path-counting
summation.

The first level of the continued fraction (3), namely
I/(E —ap~ ), corresponds to the bonding and antibond-
ing Green s functions for an isolated dimer which has ei-
genvalues of ~h(R;~) with respect to the free atomic
energy level. ' The second level of the continued frac-
tion begins to reflect the influence of the first shell of
neighbors about the bond on the bonding and antibond-
ing Green's functions. We see that the three-membered-
and four-membered-ring contributions are solely respon-
sible for the differences between the bonding and anti-
bonding recursion coefficients given by Eqs. (8) and (9).

A many-body form for the bond order may be derived
by using perturbation theory to expand the bonding and
antibonding Green's functions G — about the average
Green's function G = —,

' (G++G ). The Hamiltonian
for the latter may be characterized by the semi-infinite
linear chain

0 0 0 0 0ap a] a2 an- 1 an
Lpbo s. o ~ ~ ~ ~ ~ ~b f b2

0 1 2 n —
1 n

where a„,b„are the continued-fraction coefficients of the
average Green's function Gpp. Therefore, comparing the
semi-infinite linear chain corresponding to the bonding
and antibonding recursion basis with this reference, we
have' from the first-order Dyson equation

Gpp =G()p+ g (6a ~Sa„)Go„G„O
n=0

+2 X (~b. ~ ~p. )Go(.—1)G'o, (io)
n=l

where a„—=a„+Sa„~6a„, b„=b„+6b„+' Sp„. It
should be noted that the recursion coefficients a„,b„of
the average Green's function are not in general equal
to the average recursion coefficients (a„++a„)/2, (b„+
+b„)/2. Thus, 8a„and Bb„represe tnthe degree to
which the coefficients are not equal to the average
coefficients. Substituting into Eq. (2), the bond order
becomes

where the response functions Zp „o(EF) are defined by

1 fEF
Zpm „p(EF) = ImJI Gym(E)G„O(E)dE .

The response functions are those for the reference
semi-infinite linear chain with coefficients a„,b„. An an-
alytic expression for them may be derived by taking the
reference linear chain as that with zero on-site energies
a„=0 and constant hopping elements b„=b~ =b, say.
This will lead to errors of first order in a„/b, (b„b)/b-
in the response function Eq. (12), and hence errors of
only second order in the bond order Eq. (11). It follows
from the Lanczos recursion algorithm Eq. (4) that

]/2
b =, g h (R~k)+ g b (R~k) /2.

,kwi kwj
(i3)

where b is taken to be the negative square root corre-
sponding to h =ssa(0. The semi-infinite linear chain
with constant hopping matrix elements b has Green's-
function matrix elements given by'

bGoo„=exp[i(n+ 1)(t], (i 4)

sin(m +n+ 1)((1F
Zpmnp + + I

si n(m +n +3) (tF

m+n+3
(i5)

with 1))F =cos '(EF/2b). (t)F is fixed by the number of
electrons per atom N through '

N = (2pF/rr) [1 —(sin2$F)/2((1F] . (i 6)

Figure 1 shows the behavior of the first three reduced
response functions g as a function of the number of elec-
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where cos((1 =E/2b. Therefore substituting Eq. (14) into
Eq. (12), we have Zp „p =Zp „p/~ b

~
where the reduced

susceptibility

4 Z Zpn, np(+F)~&n Z ZO(n —1)np(+F)~Pn,
n=p n=l

1.0 1.5 2.0

FIG. 1. The reduced susceptibilities as a function of the
number of electrons per atom.
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trons per atom N.
Finally, the many-body character of the bond order may be displayed explicitly by substituting the values of Sap, 6'a&,

and BP~ from Eqs. (7)-(9) into Eq. (11). To first order, using p3/pz ((1, we find

e~ =4, happ pp(N)[h (R ~)]/b+gpp )p(N) g h(R t )h(Rg)) /b
,k &i,j

+gp~, ~p(N) g h(R;k)h(Rkt)h(R~~) /b + .
,k, 1&i,j

(17)

This is the central result of the Letter. The first term is

similar to the embedding potentials of Daw and Baskes
and Finnis and Sinclair, in that this contribution to the
bond order may be written

H,~)~ =4gpp pp(N)h(R;~)F((p, +pi)/2), (18)

where the embedding function F(p) =p 't with the lo-
cal "charge density" or "second moment" given by

p; =gt, &; h (R;t, ). For nearest-neighbor interactions
only, 0;t~ ~ ~ 1/Jz, where z is the local coordination num-

ber, a well-known result within the second-moment ap-
proximation. ' It accounts naturally for the back-bond
strengthening factor which Chelikowsky et al. ' found
necessary to include for an accurate representation of
both bulk and cluster silicon geometries.

involves only explicit two-body sums. We now
demonstrate the importance of the three-body and four-
body contributions to the bond order by considering the
topology of a four-atom s-valent cluster. The total bond
energies of the one-dimensional linear (l), two-dimen-
sional square (s), and three-dimensional tetrahedral (t)
clusters are shown in the left-hand panel of Fig. 2 as a
function of the total number of valence electrons. The
bond energies were obtained by diagonalizing the two-

FIG. 2. The total bond energy as a function of the total
number of electrons for a linear (full curves), square (dashed
curves), and tetrahedral (dotted curves) cluster of four atoms.
The left-hand panel gives the molecular-orbital result, whereas
the right-hand panel shows the predictions of the many-body
potential for the bond order.

center Huckel secular equation with nearest-neighbor in-
teractions only. The relative strengths of the hopping in-

tegrals hl. h, :h, were set by assuming that the equilibri-
um bond lengths of the individual clusters are such as to
give identical second moments in the spirit of the
structural-energy-diff'erence theorem. ' That is, p 2

=6ht =8h, =12h, or h, =h/J2, h, =&3h/2, ht =h.
We see that the curves predict a change in structural sta-
bility from tetrahedral to linear to square as the total
number of electrons in the cluster increases. The evalua-
tion of the bond order directly using the appropriate re-
cursion coefficients in Eq. (3) would, of course, give
identical curves.

The right-hand panel of Fig. 2 shows the predictions
of the many-body potential approximation to the bond
order. The linear cluster has no three-membered or
four-membered rings, so that its behavior is controlled
by the response function jpppp in Fig. 1. However, each
bond in the square cluster is associated with one four-
membered ring so that there is an additional contribution
from gp] ~p. This leads to the oscillatory behavior of the
stability from square to linear to square observed in Fig.
2. On the other hand, each bond in the tetrahedral clus-
ter is associated with two three-membered rings and two
four-membered rings. The three-membered rings intro-
duce the happ ~p response function which skews the binding
curve towards small values of the e1ectron number. It is
the presence of these three-membered rings which favors
the close-packed structures over the more open struc-
tures for monovalent, divalent, and trivalent sp-bonded
elements. '

Thus, we see that the three-atom and four-atom con-
tributions are essential for the correct prediction of the
structural trends in Fig. 2. The perturbation theory has
been performed with respect to a continuum-average
Green's function so that it is not surprising that the
agreement with the exact cluster results is only approxi-
mate. Chelikowsky et al. ' has already found that their
empirical bond-order predictions became progressively
worse the smaller the cluster, the approximate and
molecular-orbital binding energies diAering by nearly a
factor of 2 for a four-atom silicon cluster. Nevertheless
the beauty of Eq. (17) is that it allows the bonds to be
modeled reasonably accurately in all environments, from
small clusters through to the infinite bulk, with the re-
duced response functions g being constants indepen-
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dent of the bond environment. This could be a decisive
advantage of this bond-order potential over other
theoretically derived N-body potentials.

In conclusion, a many-body potential has been derived
for the bond order of s-valent systems. The importance
of the three-body and four-body terms has been demon-
strated. The simplicity of the potential s analytic form
will allow the current use of embedded-atom potentials
to be extended to include three-body and four-body
terms. These could help remove problems in the accu-
rate fitting of the surface energy, vacancy formation en-
ergy, and elastic anisotropy of fcc metals. ' These po-
tentials may be generalized to the case of sp-valent ele-
ments such as silicon or sd-valent elements such as
molybdenum. The form of Eq. (17) remains unchanged
except that the o. and z bond orders display explicit
bond-angle dependence not only through the ring terms
but also through the b defining the reference medium.
Results for sp-bonded systems will be presented else-
where.
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