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A stochastic macroscopic approach to giant dipole resonances (GDR's) in hot rotating nuclei is

presented. In the adiabatic limit the theory reduces exactly to a previous adiabatic model where the uni-

tary invariant metric is used to calculate equilibrium averages. Nonadiabatic effects cause changes in

the GDR cross section and motional narrowing. Comparisons with experiments where deviations from
the adiabatic limit are substantial are shown and can be used to determine the damping of the quadru-
pole motion at finite temperature.

PACS numbers: 24.30.Cz, 24.60.Dr

Recent experiments are providing new information on
the properties of highly excited nuclei created in heavy-
ion fusion reactions. The major experimental probe is
the giant dipole resonance (GDR) built on such hot nu-

clei. From these experiments one attempts to learn
about the evolution of the nuclear shape with tempera-
ture and spin. '

We have developed a unified mean-field theory of hot
rotating nuclei from which we have derived the universal
features of the shape evolution. The theory is oased on
the Landau theory of phase transitions where the quad-
rupole deformation parameters play the role of the order
parameter. A macroscopic approach to the GDR at
finite temperature was then developed by using a unified
description of thermal quadrupole shape fluctuations.
With only two free parameters, determined by the mea-
sured ground-state (zero-temperature) GDR's, the the-
ory reproduces well many of the experimental results at
finite temperature and spin. The importance of thermal
shape fluctuations has been demonstrated by other au-
thors as well ~

In several cases, however, the theory seems to overesti-
mate the observed width of the giant resonance. It was
recently suggested that, in analogy with nuclear mag-
netic resonance in condensed matter systems and its ap-
plication in rotational damping of nuclei, ' the GDR
could display motional narrowing. The basic idea is to
assume the fluctuations in the quadrupole shape to be
nonadiabatic so that the dipole vibration does not have
enough time to probe separately each nuclear shape.

This idea was incorporated in a microscopic model of
Ref. 9 by using a description of the compound-nucleus
wave functions based on random-matrix theory. Al-
though the model can explain motional narrowing, its
adiabatic limit yields the Wigner semicircular distribu-
tion when the Gaussian orthogonal ensemble of random
matrices is applied and it does not reduce to the previ-
ously used adiabatic fluctuation theory. '

In this Letter we introduce a relatively simple macro-
scopic theory of time-dependent fluctuations which gen-
eralizes our previous theory ' of the GDR to nonadia-

batic situations. The quadrupole shape fluctuations are
described by an equation of the Brownian-motion type in

which the free energy plays the role of an external poten-
tial and the random force is generated by the coupling of
the quadrupole shape degrees of freedom to all others.
The giant dipole vibration is described by a damped har-
monic oscillator which is coupled to the quadrupole fluc-
tuations through the shape dependence of its frequency
and damping width. Its cross section is found from the
Fourier transform of its average time correlation func-
tion.

When compared with the adiabatic theory of static
fluctuations, the present theory contains only one addi-
tional parameter which determines the degree of adiaba-
ticity of the process. It spans the whole range between
the adiabatic and the sudden limit. In the adiabatic lim-
it it reproduces exactly the static fluctuation theory,
where thermal averages are done with the unitary invari-
ant metric of Refs. 5 and 6. As the process becomes less
adiabatic the GDR gets narrower. In the general case,
we solve the above equations by Monte Carlo techniques.
For those cases in which the experiment deviates from
the adiabatic limit we determine the adiabaticity para-
meter from comparison with the experiment.

We begin by introducing the equations of motion
which describe the evolution in time of the quadrupole
shape parameters aq„(t) in a frame which rotates with
constant angular velocity ra. We assume that a2„satisfy
a Langevin equation ' ' of the form

&2 g BFla.2 +f2 (t),
where F(T,co;a2„) is the free-energy surface in the rotat-
ing frame at temperature T and angular velocity co, and

g is a parameter. —g
' elF/Bag„plays the role of an

external average driving force for a2„while f2„(t) is a
random force which causes statistical fluctuations in a2„
and makes the process stochastic. In the above equation
we have assumed the quadrupole vibration to be over-
damped so that a description in terms of a first-order
equation (1) is feasible. The parameter g is the propor-
tional to the mean relaxation time of the quadrupole
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It can be shown that irrespective of the initial distribu-
tion, P(a2„,t) always converges in the limit t ~ to a
stationary distribution characterized by BP,&/Bt =0. We
find

P, ~ e
—~264iF

Since it should coincide with the equilibrium distribu-
tion ' e ~, we conclude that

4 =2T/Z

This is a fluctuation-dissipation theorem which deter-
mines the correlation amplitude g.

If the initial distribution (at t =0) is already the equi-
librium distribution, it will stay so at any future time.
The corresponding ensemble of solutions [a2„(t)] is
known as a stationary Markov process" and we shall use
this process to describe the nuclear shape Auctuations at
equilibrium.

The giant dipole vibrations are described by a three-
dimensional damped harmonic oscillator which is rotat-
ing with angular velocity m. The frequencies and damp-
ing widths depend on the shape a2„exactly as in the adi-
abatic model. Denoting by D the dipole operator in the
rotating frame and by P its conjugate momentum we
have

D =P —ra x D ——,
' I D,

P= —E D —mxP ——, I P,2 ]
(6)

where E and I are frequency and damping matrices, re-
spectively. E is the matrix which in the principal frame
is diagonal with elements

&/2

Ej =Epexp 2K
pcos y — j

3

as in the adiabatic model. ' The matrix I is given by a
power law '

r =r, (E/E, ) '.
Notice that the matrices E and I which enter Eqs. (6)
should be expressed in terms of a2„ in the rotating frame.
Usually 8=1.6 and EO, I 0 (characterizing a spherical
nucleus) are determined from the ground-state GDR.
Thus, the GDR equation of motion (6) is coupled to the

motion. The random force is assumed to be Gaussian
and stationary, satisfying

(f2 (t)) =0, (f2„(t)f2„(t'))=&a(t —t')8„„'.

The stochastic process (1) determines an ensemble of
solutions [a2„(t)[. One can construct the probability dis-
tribution function P(a2„,t) at any time t and show that
it satisfies a Fokker-Planck equation, "

quadrupole equation (1) through the a dependence of E
and I .

The set of stochastic equations (1) and (6) comprise
our macroscopic model for the time-dependent Auctua-
tions. The GDR absorption cross section is then calcu-
lated from the Fourier transform of the dipole correla-
tion function (Di(t)Di(0)), where the D's have been ro-
tated back to the laboratory frame.

The degree of adiabaticity of the process is determined
by the parameter g. To see that we define the adiabatici-
ty parameter g as the ratio between the frequency spread
AE of the GDR due to variation in the static deforma-
tion and the mean relaxation rate X of the quadrupole
motion,

fD[a]e cr(e;a2„)
G'abs(e; T, cd) = (11)

D[a]e
where D [a] =II„da2„=p i sin 3 y i dp d y d Q. Equation
(11) is identical with our previous adiabatic model. '

Furthermore, the above unitary metric emerges as the
one which should be used in that limit if (1) describes
the correct dynamical evolution of a2„.

To solve the above stochastic equations and to deter-
mine the dipole correlation function in the general case
we proceed as follows:

(i) We choose an initial ensemble of quadrupole defor-
mations [a2„(0)J which is distributed according to the
equilibrium ensemble e

(ii) For each a2„(0) we solve (1) by Monte Carlo
techniques. We use a second-order stochastic Runge-
Kutta method sUch that

a2~(t +ht ) a2p (t ) +g2~ht + (ht( ) Y2~, (12)

where g2„ is an average of —g 'BF/8aq„and the real
and imaginary parts of V2„are five independent standard

q=hE/). .

We can estimate hE = (S/4') ' Eohp and A. = ST/
g(P'), so that

~hP(P'),Ep

(20tr) 't

where (P ) is the equilibrium average of P and (hP) is
the equilibrium variance of p. The parameter g plays a
role similar to that of I „ in the microscopic models of
Ref. 9. The adiabatic limit corresponds to g &) 1

(g ~) where the quadrupole deformation changes
slowly enough for the GDR to feel these changes. In this
limit we can assume the quadrupole deformation a2„ in
the GDR equations (6) to be frozen at its initial value

a2„(0), so the Fourier transform of the dipole correlation
function [for a fixed a2„(0)] is a superposition of Breit-
Wigner curves similar to Eq. (3) of Ref. 6. The actual
GDR absorption cross section then becomes the average
over the initial distribution, i.e., the equilibrium distribu-
tion
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FIG. 1. Typical shape trajectories p vs time t for '' Sn at
T=1.8 MeV and co=0.535 MeV obtained from the solution of
Eq. (12). The three trajectories shown correspond to various
values of g: @=500 (adiabatic limit), @=50, and @=5 (sud-
den limit). Note that as the process becomes more nonadia-
batic the trajectory samples a larger fraction of the phase
space at a given time interval.

normal random variables. The derivatives of F above are
calculated analytically using the Landau expansion in

Ref. 5. We obtain an ensemble of "shape trajectories"
ja2„(r)I which is equilibrated at any time r.

!n Fig. 1 we show three typical trajectories p(r) for
'' Sn at T=1.8 MeV and co=0.535 MeV. The lower
one corresponds to the adiabatic limit (t))) 1) while the
upper one is in the "sudden" limit (rl((1) where the
quadrupole shape fluctuates rapidly. An intermediate
situation (ri —1) is shown in the middle. We see that the
adiabatic process is very "smooth" but as we move fur-
ther away from the adiabatic limit the trajectories be-
come more "erratic" (on the same time scale) and the
changes in deformation are larger.

(iii) For each trajectory az„(t) we solve (6) for D(t)
in terms of D(0) and P(0). The correlation (D(r)D(0))
is then calculated by averaging over the ensemble
fa2„(t )} using appropriate (quantum-mechanical) initial
correlation functions which are consistent with the adia-
batic model. '

Nonadiabatic eAects are seen most clearly when one
assumes a zero intrinsic width (i.e., I o =0) so that
broadening of the resonance comes only from the cou-
pling to the quadrupole degrees of freedom. We thus
consider such a hypothetical ' Er nucleus at T=1.5
MeV and ro =0 for which (AE) ' =2 MeV '. The
solid lines in Fig. 2 are the fit to the Monte Carlo calcu-
lations (error bars) of the GDR absorption cross section

s I s I s I s I i I i I i I j I s I s
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FIG. 2. The Fourier transforms of the dipole correlation

function found from the solution of the stochastic equations
(1) and (6) for various values of g (@=750, 150, and 25). For
the purpose of demonstrating the effects of nonadiabaticity we
have chosen a hypothetical case where 10=0 (i.e. , no intrinsic
damping of the dipole) for ' Er at T=1.5 MeV. The bars
show the statistical errors associated with the Monte Carlo cal-
culations and the solid lines are a weighted fit. The dashed line
presents the adiabatic model of Refs. 6 and 7. Notice that
various peaks coalesce and get narrower as the process becomes
less adiabatic (g get smaller).

and the dotted line is the adiabatic model. At @=750,
' =8.3 MeV ' so that we are close to the adiabatic

limit where three peaks are seen. At smaller g (such as
@=150where iL '=l.7 MeV ') the two peaks on the
right coalesce and get narrower. Then the left-hand
peak starts to move to the right while disappearing, and
in the sudden limit we have a single narrow Lorentzian.
Thus though the general eAect is that of motional nar-
rowing as discussed in Ref. 9, the detailed shape of the
resonance is also sensitive to g. Note that as the process
becomes more sudden it is necessary to take a smaller
time step h, t since the quadrupole Auctuations are more
erratic. Thus in order that the results will be indepen-
dent of the time step we have to choose At ~0.006
MeV ' in the adiabatic case but h, t (0.0002 MeV ' in
the sudden limit.

A realistic calculation (I o~0) is shown in Fig. 3 for
'' Sn at T=1.8 MeV and co=0.535 MeV for which
(hE) ' = l. l MeV ', where our adiabatic model
(@=500) overestimates the experimental width (dotted
line). We used Eo=15.2 MeV, I o=3.76 MeV, and
6=1.6 and calculate the GDR absorption cross section
for several values of g (@=5, 30, and 500). As g de-
creases the resonance gets narrower and its structure
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FIG. 3. The GDR cross section for " Sn at T=1.8 MeV

and co=0.535 MeV. The dotted line is a CASCADE fit to the
experiment and the solid lines are the calculations of the sto-
chastic model for @=500, 30, and 5. The cross section for

@=30 seems to give good agreement with the experiment and
suggests that the process is intermediate between adiabatic and
sudden.

changes. The value which fits the experiment the closest
is g =30 which corresponds to k ' =0.36 MeV ' and
therefore to an intermediate ri (ri =0.3).

In the sudden limit ri«1 (g 0) it is possible to
reduce the stochastic equation (6) to an equation of
motion for (D) which is basically that of a damped rotat-
ing oscillator with some eA'ective frequency and damping
width. In the absence of intrinsic damping (I a=0) the
eA'ective damping I is estimated to be

I = (aE)'P, =qt3E «t5,E,
which is narrower by a factor g than the width in the
adiabatic limit. This is exactly the motional-narrowing

eA'ect discussed in Refs. 9 and 10. In realistic applica-
tions I o has to be added to the right-hand side of (13).

To conclude, it seems that a macroscopic time-
dependent fluctuation theory based on a Landau theory
is successful in describing the observed GDR even in
nonadiabatic situations. The model contains a relaxation
parameter g whose dependence on temperature and the
specific nucleus under consideration can be inferred from
experimental data. It will be interesting to determine
this parameter from a theoretical model for a damping
of the quadrupole motion at finite temperature or from
independent experimental data such as fission.
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