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Absence of Impurity Bands in Conjugated Polymers
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Electronic states in conducting polymers containing impurities are analyzed. The influence of
backward- and forward-scattering (bond and site) impurities is studied using the coherent-potential ap-
proximation. Because of the 1D nature of the problem, the formation of impurity bands in the gap, as
known in different circumstances such as semiconductors and superconductors, is suppressed if the
strength of the bond impurity is larger than that of the site impurity. Consequences for the interpreta-

tion of experiments are discussed.

PACS numbers: 71.20.Hk, 71.25.—s, 73.20.Dx

The physical properties of conjugated polymers change
drastically upon addition of donors or acceptors. This
has been discussed, so far, only by considering additional
electrons or holes in the electronic structure of the un-
doped material and has led to the concept of nonlinear
solitonic excitations! in these systems. Earlier, this was
questioned by Bryant and Glick? who drew analogies to
conventional semiconductors, where it is known that im-
purities lead to the formation of impurity states (or
bands) in the forbidden energy region of the undoped
material. It is, therefore, worthwhile to know whether
impurities do significantly change the electronic struc-
ture.

There have been some attempts to address this ques-
tion. Using the Su, Schrieffer, and Heeger (SSH) mod-
el® and its continuum version* [the Takayama-Lin-
Liu-Maki (TLM) model] for the undoped polymer, the
influence of randomly distributed impurities has been
studied by various techniques.>~’ The impurities act as
backward- (k— —k) (“bond impurity”) or forward-
(k— k) (“site impurity”) scattering centers of the =«
electrons. The exact-diagonalization work for finite sys-
tems® has not obtained information on the electronic
structure. The supersymmetric treatment® of the ran-
dom potential and the (equivalent) Born approximation’
for the self-energy yield a decrease of the energy gap,
similar to the case of magnetic impurities in supercon-
ductors. On the other hand, it is known that this approx-
imation cannot discuss the emergence of impurity bands.
The coherent-potential approximation (CPA) can be
used to investigate such a problem.® Here, we apply it to
doped conjugated polymers.

To fix the notation, we start from the continuum TLM
model,

Hrn=2 [ dx w1 ()= i03(8/0x) + 01860 1¥, (x)

+1/2m) [ axax), M

and include impurities,
Himp=3 [ dx ] ()Vs(x —x)w,(x) @)

V=IO'1+J1 5

where the impurity sites x; are random; I and J are the
strengths of bond and site contributions, respectively; the
quantity ¥,(x) is a two-component spinor describing
left- and right-moving electrons; the o;’s are the Pauli
matrices; A(x) is the order parameter describing the di-
merization amplitude; and A is the dimensionless elec-
tron-phonon coupling constant. Here, we take the
transfer matrix element between intercarbon atoms
to=1 and the size of the unit cell in terms of the contin-
uum model 2a =1, and then, the Fermi velocity is vp=1.
The system size is 2alN =N. We assume uniform dimeri-
zation, A(x) =A. We study the influence of isoelectronic
disorder, i.e., without changing the total number of elec-
trons in the system. Therefore, we expect that the for-
mation of kinks or polarons is suppressed since, in the
pure case, these distortions are formed as excited states
upon the addition of charges into the system. When the
site impurities are always between the 2nth and
(2n+1)th sites, in the SSH model, giving them the same
potential strength, we have the Hamiltonian (2) without
a Jo, term.

The electron Green’s function is defined by G(k,p, )
= — (T, %4 (r)¥/(0)) and reads for the undoped system

Go(k,iE,,) "(iE,,"'ﬂ — ko3 —Agor) -1 ,

where E, =Q2n+1)xT, T being the temperature and u
the chemical potential. For the case of one single impur-
ity at x =0, we can define the ¢ matrix by

G (k,p,iE,) =G (k,iE,)xp
+ GOk, iE)t (k,p,iE,)G%(p,iE,)
and obtain t=V/N)(—gV)~!, with g=(/N)
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x> «G%k,iE,). The localized states around the impuri-
ty are determined by the singularities of ¢z at 7=0 K.
This condition yields

W— 0= —4r;+J0)/G+T12—T?), 3)

iE,+u being replaced by w. We find that there is no
solution, i.e., no impurity state, if |71] > |J] and
IAo> 0. Thus, the existence of such an impurity state
depends on the relative sign of the order parameter Ao.
This is similar to the case of a charge-density wave
(CDW) in the presence of an impurity, where it was
shown®'? that the phase of the CDW determines the ex-
istence of bound states. [Lin!'® considers only the case
I =J which is included in our formula (3).]

For the many-impurity case, we study the averaged
Green’s function G ~ ' =(G°) ~' — £, with self-energy =.
In the CPA, X is determined through

cV=)l1—g(V—x)1"'=(U—-c)z(+gx) "'=0,
4

with

§=(1/N)§6(k,i5,,)=(1/N)};,[(G°)“—z]“, (5)

and ¢ the impurity concentration. All quantities are 2x2
matrices. This is a generalization of previous treat-
ments. %’

For a qualitative understanding of the results, it is
sufficient to expand (4) for small impurity concentration.
One then gets = =c(Io;+J1), which can be absorbed in
the unperturbed Green’s function G° by regarding Ag
and w as A=A+cl and 6=w —cJ, respectively. Conse-
quently, when calculating the total energy per site E
=2[dw wp(w,A)+A%/27)\, with the p density of states,
we use

plw,A)=|&|/n(a*—A%)"2. 6)

The energy difference between the present state and the
undimerized impurity-free state is

SE =—(AYm)InQA/|A|)+2cIA/x
+A%2x+ A% 270, @)

where A is the cutoff. The A dependence breaks the
A— —A symmetry. The minimum of the total energy
occurs at the side /A > 0, since the main contribution
comes from the first term. Consequently, when | 1]
> |J|, there are no bound states in the gap and hence
no impurity bands.

In order to establish the above argument, we present
numerical results for the case of positive I and J. The
parameters are A =0.183 and ¢ =0.01. Electronic states
are half filled. The order parameter A is determined by
the condition

dE/3A=0. 8)
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FIG. 1. (a) Two solutions of |A| as functions of the
strength of the bond impurity 7. The quantity Ao is the order
parameter without the impurities. The strength of the site im-
purity is J =1. Concentration is ¢ =0.01. The symbols ® and O
correspond to the positive and negative A’s, respectively. (b)
Total energy per site for the two solutions. The positive and
negative A’s give stable and metastable states, respectively.

We solve (4), (5), and (8) by an iteration method, re-
placing iE,+u by w+ié and starting from an arbitrary
initial set of values for A and £. Analytical properties of
the retarded Green’s function are required.

The results are to be reported mainly for J=1. The
strength of 7 is varied within 0 <7 < 2. When I#0, two
solutions are found for A. Figure 1(a) shows them as
functions of I. Filled squares have positive A’s, while
open squares have negative A’s. The corresponding total
energies are shown in Fig. 1(b). Positive A’s correspond
to the energy minimum, which is stable. This coincides
with the above conclusion for small concentration.

Electronic densities of states are shown in Figs. 2 and
3 for the stable and metastable solutions, respectively.
The chemical potential u is always in a region where the
density of state vanishes, as indicated by the arrow. In
the stable solution, at /=0, there is an impurity band,
more or less distinct, in the gap. As [ increases, it moves
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FIG. 2. Density of states per site of the stable solution. The
strength of the site impurity is J =1. The units along the ordi-
nate and abscissa are ¢¢ ' and to, respectively. The strength of
the bond impurity is (a) 7=0.5, (b) 7=1, and (c) I=1.5. The
arrow indicates the chemical potential u.

toward the valence band to be absorbed finally at 7 =J.
There is no impurity band when 7 > J. In the metastable
solution, there is one impurity band at 7=0. As [/ in-
creases, it moves toward the gap center. When I be-
comes larger than J, a new impurity band is emitted
from the conduction band.

We show a phase diagram for the stable state in Fig.
4, I and J being the variables. In region I, there is no
impurity band. We find an impurity band which is con-
nected to the valence band in region II. It is isolated in
region III. The boundary between I and Il is 7 =J. The
boundary between II and III turns out to be nearly
parallel to 7 =J.

We have shown that, differently from conventional
systems such as semiconductors and superconductors,
there are no impurity bands in the gap in conducting po-
lymers if the strength of the bond impurity is larger than
that of the site impurity. The main reason is the one-
dimensional nature of the Fermi surface which reduces
drastically the allowed phase space for scattering pro-
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FIG. 3. Density of states per site of the metastable solution.
The strength of the site impurity is J=1. The strength of the
bond impurity is (a) I =0.5, (b) =1, and (c) I=1.5.

cesses. Similar results are valid for CDW systems where
the absence of impurity bands has been verified experi-
mentally.

- It is worthwhile to bear in mind plausible values for
impurity strengths in relativistic polyacetylene in view of
the above new finding. The Coulomb potential of a
charged impurity, used by Conwell and Jeyadev,!! gives
| J| ~0.42 in the units 2a =1 and 7o=1. It has a matrix
element which modifies the electron transfer, giving
| 7] ~0.14, with the help of the tight-binding wave func-
tions'? Jeyadev and Conwell'? have discussed the effects
of sp3 defects to find that the conjugation is severely in-
terrupted. The transfer integral for the x electrons could
be 1% of 7o at the sp? site, which implies |7| =1. The
parameter J has not been estimated, since off-plane hy-
drogen atoms introduce an additional p,-like state into
the Hamiltonian. The cis segments in the trans chain
should be an example of the bond-type impurities, as
Brazovskii and Kirova have suggested.'* The parameter
I is of the order of A, ~A¢—~0.26, while J==0. Here, A,
is a parameter introduced in Ref. 14.. The strong bond-
type impurities can also be found at morphological de-
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FIG. 4. Phase diagram of the stable solution. In region I,
there is no impurity band. The impurity band is connected to
the valence band in region II. It is isolated in region III.

fects, such as irregular bendings of the polyacetylene
chain. They would primarily give rise to I, keeping J
practically zero.

The shortcoming of the present theory is the assump-
tion of a homogeneous order parameter A in the presence
of impurities. One would expect A to vary around the
impurity. A self-consistent treatment of a space-
dependent A(x) appears to be necessary. This task is
difficult but work in this direction is in progress.

This self-consistent treatment is also required if one
wants to understand in detail what happens during the
doping process. The doping introduces additional
charges into the system and alters the electronic struc-
ture of the undoped material through scattering process-
es. A different perspective of this problem has been dis-
cussed recently.!! Consequences for the conductivity
mechanism are not yet well understood, but the overlap
of (localized) impurity states and band states of the po-
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lymer seems to be of importance.
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