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We show how to treat boundary divergences in heterotic string theory covariantly and unambiguously.
The method applies even to theories with nonvanishing tadpoles; in this case the Fischler-Susskind mech-
anism su%ces to ensure well defined answers. Also n-point functions are well defined with no special
string-tension renormalizations. As an example we find the loop corrections to the linearized back-
ground equations of motion for the O(16) XO(16) string needed to give unambiguous, finite scattering
amplitudes. No splitting or projection of supermoduli space is needed.

PACS numbers: 11.17.+y

One way to quantize a field theory is to quantize small
fluctuations about a classical ground-state configuration.
If we inadvertently choose a starting configuration which
is not an extremum of the classical potential, various
pathologies arise in the resulting perturbation theory. In
particular, we find that some "particle" states can disap-
pear into the vacuum. If moreover some of these states
are massless, then physical amplitudes will diverge due
to processes in which a state propagates for a very long
time before disappearing. Even if we begin at the classi-
cal minimum, loop effects can destabilize the vacuum,
giving rise to the same artificial infrared divergences.

In a theory with nonvanishing tadpoles it thus becomes
necessary to cut off diagrams which in real space have
long on-shell lines, and to introduce compensating shifts
in the background in a way which also depends on the
cutoff. If all goes well the total, modified theory will

have a good limit as the cutoff' is removed.
In string theory many of the same considerations ap-

ply. Things are not as simple as in the field theory case,
however, since it is not so clear how to implement the
necessary cutoff. In a multiloop diagram what exactly is
the "length" of a given internal tube? There is in fact no
coordinate-invariant answer to this question. We must
instead introduce into a given diagram some extraneous,
coordinate-noninvariant information and hope that the
final answer will somehow be independent of this choice.

Fischler and Susskind carried out this program in the
bosonic string ' (see also Ref. 2). By introducing a
world-sheet metric one can cut off the one-loop diagram;
the resulting metric dependence in the theory then can-
cels against another dependence, which arises when the
background fields are deformed from a conformally in-
variant false ground state (flat spacetime) to a confor-
mally noninvariant true ground state (de Sitter space).
Many new results and extensions followed. In particu-
lar, Callan, Lovelace, Nappi, and Yost and Polchinski
and Cai found that a similar mechanism worked for the

type-I superstring to one loop. We will argue below,
however, that the full subtlety of the problem is not ap-
parent from this case.

The case of closed fermionic strings has remained un-
clear. In the picture-changing formalism an apparent
ambiguity was found, associated with the boundary of
supermoduli space. In particular, the problem seemed
to be an inherent pathology associated to superspace in-
tegration. ' It was found to be harmless in the case of
certain theories having no tadpoles, though even in such
cases it appeared necessary to renormalize the string ten-
sion by hand for the various n-point loop amplitudes.
Since ultimately we are interested in theories which
break their supersymmetry, it is desirable to extend this
result; while presumably a successful string theory will
break supersymmetry nonperturbatively, still it is impor-
tant to understand the perturbative situation first. Simi-
larly one cannot expect to get the corresponding issue in

string field theory straight without understanding the
first-quantized situation.

In this Letter we will argue that tachyon-free heterotic
string theories satisfying a certain condition do not suffer
from any ambiguity in perturbation theory. The same
mechanism used by Fischler and Susskind, as interpreted
by Polchinski, su%ces to get well defined amplitudes
from such theories. ' Our argument does not require
any facts about the global structure of supermoduli space
nor indeed any other new mathematical results. As in
Ref. 2, we will see how the operator formalism for string
theory greatly clarifies the issues; some of the necessary
ingredients for the fermionic case appear in Ref. 12,
while a general reference is 13.

As an example we will discuss the O(16)XO(16)
heterotic string, ' obtaining the linearized corrections to
its background equations of motion. Many more details
will appear in Ref. 15. Bowing to tradition we will leave
a careful treatment of multiple divergences to future
work. We expect that similar considerations apply to
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type-II superstrings as well. Our approach was suggest-
ed in the conclusion of Ref. 9 and in Ref. 16. Other au-
thors have proposed approaches to the ambiguity prob-
lem which seem very diAerent. '

To put the issues in focus, suppose we are given a
volume form p on the complex plane of the form p=

~ q ~ dq h dq+ (regular), where q is the standard
complex coordinate. The integral of p over the unit disk
diverges. We can try defining I, =f ~q ~

&,p, but we must
keep in mind that this depends not only on c and the
form p, but also on the choice of coordinate q used to ex-
clude an t. ball. If q'=aq+bq + . is another coordi-
nate centered at zero then we can define I,' by excluding
[ )

q'~ & e1; then I'(e) =I(e') —4' ln ) a
~
+O(e). Thus

if we propose to find a "counterterm" to add to I(e) so
as to get a good limit as e 0, the former must also de-
pend on the same choice of q in a way which cancels the
dependence in I(e). Note that as the cutoff is removed it
is only the magnitude of a, the first Taylor coefficient,
which matters; were p more divergent we would have
needed more coefficients.

Now suppose there are several more variables, m, and

p =
~q ~

dqAdqAQ+(regular), where 0 is some form
in m. Now I(e) is the integral excluding a cylinder
[

~ q ~
& e). Once again we can expand q'=a(m)q

+O(q ), and once again all that matters as e'~ 0 is the
function

~
a(m) ~. In particular, if we can exclude a

cylinder about the locus 6=—jq =Oj in a way which is

canonical, or standard, up to first derivatives then we
have a canonical way to cut off' the integral of p. If,
however, h, is some complicated surface then in general
there will be no natural cutoA' prescription and we have
to make choices.

In a string theory without tachyons the string measure
behaves like p above. The dangerous locus fq —01 con-
sists of surfaces with very long tubes, or equivalently
very narrow necks. If the theory has nonvanishing tad-
poles it is these configurations which give rise to the
divergence described above. The mechanism proposed in

Ref. 1 for canceling the divergence works as follows.
One chooses a local pinching coordinate q and cuts off
the path integral over surfaces of genus g~+g2. Then
one perturbs the background fields by an amount 8&ao

(g2)

of order X ', where X is the string coupling. The ampli-
tude to order k ' ' now consists of the original part plus

a part obtained by inserting 8&so into a surface of
genus g~. There are two other contributions as well,
shown in Fig. 1.

At first Fig. 1 seems paradoxical. The counterterms
I f I3 know nothing about the right-hand side of the orig-
inal diagram, while Iq, I3 know nothing about the left-
hand side. How then can I~+I2+I3 cancel the cutoA'

dependence of I, which in general depends jointly on the
shape of both sides? The answer is that in general they
cannot. ' If we choose the pinching coordinate q wisely,
however, we can nevertheless obtain a good prescription.

g=o

s~(g,)~s~(g, )

~ )

g g

n
(g )Sy'

FIG. 1. Contributions needed to make the three-loop dia-
gram well defined.

Let us build a family of pinching surfaces as follows.
Choose a family of surfaces of genus g& with one marked
point (X(,P() depending on complex coordinates m('(),
. . . , m~~~' . Repeat for side two. Then we get a family3g 1 2

h, of pinched surfaces parametrized by m~~~, m~2~ simply

by gluing P~ to P2. To thicken these up, however, we

need more data. For each m~~~ choose a local coordinate
z ~ t ~ on X ~ centered at P ~, and similarly with side two.
The usual "plumbing-fixture" construction then gives an
almost pinched surface for each value of m~~ ~, m~2~, and a
new variable q. The point we wish to make here is that
while the construction depends on the slices z ~;~, i =1,2,
still it does so in a very special way. Suppose that we in-

stead choose z(;) =a(;)(m(;))z(;)+O(z(;)) for some func-
tions a~;~. Then we get new coordinates; the surface
formerly described by m~~~, m~2~, q, is now described by
m~~ ~, m~2~, q', where, in particular,

q' a (] ) (nl(] ) )a(2) (nl(2) )q +O(q ) .

Thus the logarithm of the leading coefficient is the sum
of a term knowing nothing about side two, plus a term
independent of side one. If we use only pinching coordi-
nates q chosen in this way, then, we can hope that the
prescription symbolized in Fig. 1 can cancel the "ambi-
guity" in the bosonic string integral. The details of how
this works are given in Ref. 2.

Mathematically the above discussion can be succinctly
restated as follows: 4, naturally has the structure of a
Cartesian product, but moreover so does its normal bun-
dhe in the full moduli space. %'e can deal with tadpoles
if we use transverse coordinates q which respect this ex-
tra structure. This is our proposal for how to generalize
the coordinates used for the genus-2 zero-point function
in Ref. 6 to arbitrary g and N.

When viewed in this way the heterotic case is very
easy to understand. The integration measure itself is in-

trinsically defined on supermoduli space, a fact which is
clearer in the coordinate-invariant operator formalism'
than in the picture-changing language. The total deriva-
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tive ambiguities appearing in coordinate-dependent for-
mulas just describe indecision concerning the region of
integration. As in the bosonic case there is no standard
way to choose this cutoff' region, but again the super-
plumbing-fixture construction helps. ' ' For a super
(i.e. , Neveu-Schwarz) pinch, one again finds a class of
pinching coordinates related by (1), where now a(;) de-
pends on the even and odd moduli of side i. Such coordi-
nates define a superconformally covariant cutoff. We
must cut oA the genus g~+g2 integration using such a q
and then try to find insertions 6I))aG on lower genus sur-
faces which cancel the dependence on chosen local super-
conformal coordinates z~, z2 near the attachment points.
We need not consider spin (i.e. , Ramond) pinches, since

10

in the heterotic string Ramond states cannot disappear
into the vacuum.

We should also be requiring that Beech-Rouet-Stora-
Tyutin- (BRST) exact states decouple from loop ampli-
tudes; indeed this condition subsumes the requirement
that the dependence on z~, z2 cancel. ' To implement it
we first analyze the factorization of an amplitude with
one exact state Qy inserted. The sewing state is

Lo —~ob (I )b (I )~ (I ) ~a(2)
a

where the superscript denotes which Fock space ((I
' lives

in (or bo' acts on), and I))'=(I)),); the adjoint is defined

by the standard sphere. We then get

Z+ —i/2

XCI' c c" c &( 'g)&(yIp) Ik)"'Ig)
I
k)"'. (2)

where

and

Igr»&=d I/2'a —Ic(c(s(yI/2) I
1&

Id)i&= —( —,
'

CI) —I/2+2CICIC —Ip I/2)8'(yI/2) I
1).

Here K is the string coupling defined in Ref. 2, dg are
modes of the ten spacetime fermions, dp are modes of
the current-algebra fermions, and Z+ are the positive in-
tegers.

We can forget about the tachyons in (2); since G pari-
ty is not anomalous, any amplitude with all external
states allowed by the modified Gliozzi-Scherk-Olive pro-
jection' will get no contribution from tachyons in sepa-
rating pinches. (For the nonseparating case see Ref.
15.) Since the order of a differential at the divisor 6
is a coordinate-invariant number, it makes sense to say
that the order of (2) is zero. Now multiply (2) by

I q I dqdq and consider changing coordinates from q
to q'; then only the first Taylor coefficient of the change
matters, and we see that we indeed have the situation
discussed earlier. Among the leading (massless) terms
of (2), only two are relevant, namely

—,',
I grav) I grav) ——,

'
I
dil) (g)

I dil),

I

each of these states is physical, i.e., BRST closed. This
is crucial to the success of our procedure; it is the addi-
tional condition on a heterotic theory mentioned in the
introduction, a point also stressed in Ref. 9.

One might think that
I
dil) would decouple, being it-

self BRST exact. Instead it turns out to be the total
derivative of a form which is not quite globally defined
(see Refs. 11 and 15), and so can have a nonvanishing
expectation value on a surface with a nontrivial Euler
number @=2—2g. One gets

(&grav))g = —(inc/2) x 10x (g —2) iZg,

((dil))g = —
in@i Z, ,

where iZ~=((1))~ is the vacuum amplitude at g loops.
The only effect of choosing the O(16) XO(16) string in-

stead of the usual SO(32) case is that in the former case
the g-loop partition function iZg&0, while in the latter it
vanishes.

As is well known, nonvanishing vacuum expectation
values of massless fields at genus g2 can lead to a failure
of BRST invariance at genus g~+g2, when a BRST-
exact state gives a total derivative which is nonzero on A.

Accordingly we now introduce a BRST-noninvariant
6I))so' to eliminate the problem:

I &((BG & [(Bp,+b„,)d" I/2a" I/2cIcI —e( —, CI) I/2+2cICIC —Ip —I/2)
4n

+(Co+Co)(g„c(d"—I/2+))„CIc(p I/2a"—I)16(yI/2) I
1). (4)

Here B„„h„„e,j„,and r)„are all functions of the zero mode of x". Equation (4) is the most general background with
quantum numbers appropriate to cancel the boundary term for example we have not included any gauge fields as they
will not be induced to lowest order in tadpoles. Applying the BRST operator to

I
8(I)a~a' & we get the condition for overall
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BRST decoupling:

=ri„,(8' /K) ~'~ ((grav))g, ,

—,
' a'a„„+ —,

' a„(g„——,
' ~,) —

—,
' a,(g„——,

' ~„)=0, (6)

(7)

t) 'h„,+ t) '8„,+ t)pixi —2' =0,

—,
' e'e+ —,

' a~g„=(8~'/K) —,
' ((dii))„,

t) 'e+ a~ q„=(8~'/K) ((dil) &„.

(8)

(IO)

After eliminating the auxiliary fields g and ti, we get a
homogeneous, decoupled equation for 8. To make the
remaining equations look more familiar we can define
+=N —

& h, . Thus we have

ti + =(8~ /K)(((grav))s, +((dil))s, ),
r)"ri'It„, —8 h;+28 &=(8x /K)((dil))g, .

Using (3) we can now recognize (11) as the same equa-
tions of motion as those arising in the bosonic string,
namely the equations of linearized gravity plus dilaton
with a cosmological constant given by the vacuum ampli-
tude iZ.

Thus we see that the loop-corrected equations of
motion for physical background fields are well defined at
g~+g2 loops if they are well defined at fewer loops. We
therefore obtain inductively finite, unambiguous string
dynamics, as in the bosonic case ' and as in the no-
tadpole case.
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Note added. —We have recently learned that the re-
sult (1) has been worked out by Wolpert.
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