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Bifurcation Theory of Poloidal Rotation in Tokamaks: A Model for the I.-~ Transition

K. C. Shaing and E. C. Crume, Jr.
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831

(Received 13 July 1989)

lt is shown that the poloidal momentum balance equation in tokamaks has bifurcated solutions. The
poloidal flow velocity U~ can suddenly become more positive when the ion collisionality decreases. The
corresponding radial electric field E, becomes more negative and hence suppresses the turbulent fluctua-
tions. Thus, plasma confinement is improved. The theory is employed to explain the L-H transition ob-
served in tokamaks.

PACS numbers: 52.25.Fi, 52.55.Fa

It was suggested that the onset of the transition from
the L mode to the H mode in tokamaks is triggered by a
sudden change of the radial electric field, E„, to a more
negative value, which subsequently suppresses the tur-
bulent fluctuations. ' Plasma confinement dominated
by the anomalous transport process is thus improved in
the H mode. The conclusion that a more negative value
of E„or a more positive value of dE, /dr can suppress the
Auctuation amplitudes resulted from a kinematic argu-
ment. ' This conclusion was later demonstrated both
numerically and analytically for specific turbulence mod-
els. ' Besides the H mode, other enhanced-confinement
regimes observed in tokamaks and stellarators could also
be attributed to a change of E, to a more negative
value. ' A model for the L-H transition based on the
suppression of the turbulent fluctuations with a more
negative value of E, was proposed to describe the change
of E, when the ion collisionality decreases. ' A di%culty
with the model is that the equation for E, has no bifur-
cated solutions. Thus, E, becomes continually more neg-
ative as ion collisionality decreases. The time scale of
the transition from the L mode to the H mode is of the
order of the energy confinement time in the edge region.
This seems to contradict the extremely short time scales
observed in the experiments. '

Recently, the value of E, at the onset of the L-H tran-
sition was inferred from measurements of plasma rota-
tional speeds in the Continuous Current Tokamak
(CCT) and DIII-D and directly measured on CCT. It
was found that, indeed, E, became more negative at the
onset of the transition. The power threshold of the tran-
sition was lower for the cases with counterinjected neu-
tral beams than for those with coinjected beams. The
measured fluctuation spectrum in the H mode also
showed that the fluctuation amplitudes are reduced in
the high-frequency, short-wavelength regions. All these
qualitative behaviors are in agreement with the original
predictions in Refs. 1 and 2. Itoh and Itoh have pro-
posed a diAerent model for the L-H transition based on
the change of E„, in which it is assumed that diAusive
transport processes are not intrinsically ambipolar.
They concluded that a more positive value of E„ im-
proves plasma confinement.

Here, we develop a theory based on the original propo-
sition: The transition is triggered by a sudden change of
E, to a more negative value and/or of dE„/dr to a more
positive value, which in turn suppresses turbulent fluc-
tuations by modifying the decorrelation time through the
shear of the angular velocity and improves plasma
confinement. The model to be discussed has bifurcated
states of E, that remove the di%culty of the original
model. We choose, however, the poloidal flow speed Up
and the toroidal flow speed U& as independent variables,
rather than Up and E„as used in the original model.
This choice is made so that the comparison with the ex-
perimental observations will be easier, since the data are
given in terms of Up and U&. Here, we assume that U&

remains unchanged at the transition. This assumption is
approximately valid, as can be seen from the data given
in Ref. 6. In an extended version of the model, this as-
sumption will be removed.

We first discuss the relationship between the sign of E,
and that of Up. The plasma flow velocity U can be writ-
ten as U=U~~n+U&, where U~~ is the parallel (to the
magnetic field B) Aow speed, n=B/8, and the perpen-
dicular Aow velocity is U~ =(cE,rx B/8 )+cBxVP/
Ne8 . Here, r" is the unit vector in the r direction, N is
the plasma density, P =NT is the ion pressure, T is the
ion temperature, c is the speed of light, and e is the elec-
tric charge of the ions. Taking the dot products of U
with 8 and g, the unit vectors in the poloidal 8 and
toroidal g directions, respectively, and eliminating the U~~

dependence, we obtain

U~ =U, (B~/8) —(cE„/8) + (c/NeB) dP/dr

by neglecting terms of the order of 8~/8, where Bz
denotes the poloidal magnetic field strength. We have
thus shown that Up becomes more positive if E, becomes
more negative for fixed values of dP/dr and U, . In the
DIII-D experiment, dP/dr is also changing during the
transition. However, because dP/dr is small compared
with Up the change of Up is related to the change of
E„. Furthermore, if the dP/dr term becomes more neg-
ative at the transition, E, will become even more nega-
tive for a fixed amount of the change of Up to a more
positive value. In an extended version of the model, the
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coupling of the momentum balance equations to the
pressure evolution equation will be included.

To determine Up, we solve the poloidal momentum
equation. In standard neoclassical theory, the poloidal
momentum is damped by the poloidal viscosity (B„V.~)
because there is neither a momentum source nor a
momentum sink. Here, z is the ion viscosity, and the an-
gular brackets denote the flux-surface average. Howev-
er, in the edge region the poloidal rotation is driven by
the torque associated with the ion-orbit loss. To model
the transition of Up, we need to extend the validity of the

poloidal viscosity to the regime where U~B/v, B~ —l.
where v, =(2T/M) 'i, with M the ion mass. This can be
achieved by solving the drift kinetic equation with mass
flow velocity' by the standard method. The result is''

r

(Bp V. x) = NMv, B(IpUp+ITUpo),4 r

where M is the ion mass, e=r/R, R is the major radius,
U„o= —p;v, (dT/dr)/2T, and p; is the ion gyroradius.
The integrals Ip and IT are defined as
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where U~ =U~B/viB~+ &~/2, ~, = p» (dI'/d—r»»
v~; = vRq/v, e3i2, q

= eB/B~, p» is the ion poloidal

gyroradius, and v is the ion-ion collision frequency. The
expression in Eq. (1) is valid for v+;(v) & 1. Note that
v~;(v) is defined to have the same form as v~; except v is

evaluated at speed v, and v, is replaced by v. The k~/2
term in Up is to cancel the diamagnetic flow term in

Up so that only E&B drift and parallel flow Unpin appear
in the convective term of the drift kinetic equation. It is

straightforward to show that, as Up approaches zero,
Eq. (1) reduces to the expression of the standard neo-

classical viscosity to within a numerical factor of the or-
der of unity. The fact that (B~ V m) has a local max-

imum in Up and that (Bz V. x) decreases with v~; are
important for the poloidal momentum balance equation
to have bifurcated solutions of Up. An expression for

(Bz V. n) similar to Eq. (1) valid in the plateau regime
was obtained in Ref. 12.

In the edge region (about one poloidal ion gyroradius
away from the boundary) of a tokamak, the ion orbit can
either intersect the limiter or cross the separatrix. The
ion-orbit loss region is roughly determined by the reso-
nance between the parallel particle speed vii and the po-
loidal ExB drift velocity. This relation gives rise to the
resonance condition

9N
Bf

= —Nv G

[v~;+(aU, ,
)']'"

xexp[ —[v„+(aU~ )'] '"J, (3)

where G is a geometric factor of the order of unity that
depends on the detailed shape of the loss cone in phase
space. The derivation of Eq. (3) is based on the calcula-
tion of the particle loss rate in the presence of a
velocity-space loss cone in a mirror machine. ' In that
calculation, it is found that the particle loss rate can be
estimated to be

expansion. The minimum energy of a loss orbit is there-
fore (v/v, ) & (aUp ), where a, a numerical constant,
accounts for the orbit shape, such as orbit squeez-
ing, ' ' and the profile of E,. The value of a can be cal-
culated for a given magnetic equilibrium. From the re-
sults of Refs. 14 and 15, we obtain a =JA /2[2(1
+ e)] ' with A = I/e. For E =0.25, a =0.63; for
t. =0.33, a=0.53. Because ion-orbit loss is important
only in the banana regime where v+;(v) ( 1, the speed of
the loss ions must satisfy v/v, & v~i . With these two
constraints on v/v„we can estimate the nonambipolar
ion-orbit loss rate to be '

L II/v Up, muilu

where v is the particle speed. Because
i vi/v i

(1, Eq.
(2) can be satisfied if u/u, &

i U~ i. Indeed, Eq. (2) is

only a condition to form a banana orbit. The width of
the banana orbit depends on dU~ /dr. The minimum
energy of a loss orbit estimated from detailed considera-
tion of the orbit width is of the form (v/u, )
& P(r —a) (dU~ /dr), where P is a numerical con-
stant and a is the minor radius. ' Instead of solving a
dilI'erential equation for U~, we express (dUp /dr)
x(r —a) in terms of U~ . This procedure is appropri-
ate because Ar/a ((1, where Ar —p» is the characteristic
width over which ion-orbit losses are important. One
can always relate dU~ /dr to U~ with a Taylor-series

(BN, /'dt)i„, = —N v)R. exp( —-2E,/M v, )/(2E, /M v, ) .

Here, %' is a numerical constant that depends on the
mirror ratio, E, is the critical energy above which the
loss cone exists, and the subscript j indicates the plasma
species. In our case, the critical energy E, depends on
two factors: (a) the resonance condition shown in Eq.
(2), which gives rise to 2E, /Mv, =(aU~ ), and (b)
the collisionality constraint, which leads to 2E,'/Mv,
= v+; . We combine these two constraints on E, to oh-'/2

tain the overall E, =[(E,') +(E, ) l 'i . Other possible
choices of E, lead to diff'erent dependences on v+, in the
ion-orbit loss rate. The parameter range over which the
model can have bifurcated solutions for these other
choices is wider than the one we employ here. We note
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that both (Sp V. m) and (BN/Bt)„b;& depend only on Up.
Because of the toroidal symmetry, the toroidal flow ve-
locity U& does not appear in any classical or neoclassical
process to lowest order in the gyroradius expansion.

The poloidal momentum balance equation is

——r.,b;, xs s, =(s, v m&.
e
C

(5)

Substituting Eqs. (1) and (3) into Eq. (5) and assuming
r„b;r= —r(&r ) (BN/Bt ),„b;„we obtain an algebraic
equation for U~,

(NM (Bp Up) )
dt

1 1=—(sxs. s, &
—(s, v. ~& ——er.„,„xs s, ,

C C

~here I „b;t is the particle flux associated with the ion-
orbit loss and J is the plasma current, which depends on
BE„/Bt. We have neglected poloidal momentum, po-
loidal viscosity, and orbit loss of the electrons in Eq. (4).
At steady state, we have
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For a given particle distribution function, some particles
are in the banana regime and some are in the
plateau-Pfirsch-Schluter regime. Exactly which regime
a particle is in depends on its energy. If a particle has a
speed v such that v+;(v) is less than unity, it is in the ba-
nana regime. Otherwise, it is in the plateau-Pfirsch-
Schluter regime. If a particle is in the banana regime, it
contributes to the ion-orbit loss according to Eq. (3). If
it is in the plateau-Pfirsch-Schluter regime, it contrib-
utes to (Bp V a) in Eq. (I). The appropriate weighting
in the energy space for each term in Eq. (6) is treated
with the energy integrals Ip and IT for (Bp V rr) and
with the constraint on E, for ion-orbit loss. A simple
physical interpretation of Eq. (6) is that high-energy col-
lisionless particles contribute to the ion-orbit loss and
drive a poloidal torque, while low-energy collisional par-
ticles contribute to the poloidal viscosity and resist po-
loidal rotation.

The solution of Eq. (6) can be obtained graphically by
examining the intersections of two functions, Y~(Up )
[the left side of Eq. (6)] and Y2(Up, ) [the right side of
Eq. (6)] for a given set of parameters. As an example,
we assume G =1, (sr') '

pp, /2hr =2.78, e= 4, a =0.5
for simplicity, Xp =0.2, and UpnB/vrBp =0.2. For this set
of parameters, the bifurcated solution exists as long as
a~ 1.1. We choose v, as the control parameter. As
can be seen from Fig. 1, at v+; =3.5, there is only one
solution of Up, which is —UpoIT/Ip and is the continua-
tion of the solution of the neoclassical theory. We call
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FIG. l. The transition of Up
—=A from (a) the L root to (b)

the multiple-root state and finally to (c) the H root as v+; de-
creases. The dashed lines are Yr(A'), and the solid lines are
Y2(~).

this solution the I. root. At v+; =2, there are three solu-
tions of U~. The two outside solutions are stable, and the
one in the middle is unstable. The solution close to the
origin is the continuation of the I. root; the more-positive
stable solution is the new root (we call it the H root),
which does not exist if there is no ion-orbit loss. When
v+; decreases further, only the H root exists. In Fig. 2,
we show U~ as a function of v~; for the same parame-
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(iii) Because E, becomes more negative, the level of
the turbulent fluctuations decreases, and the plasma
confinement thereby improves.

(iv) The intensity of the H, emission decreases be-
cause of the confinement improvement.

Detailed descriptions of the model and its extended
version, to include the determination of the toroidal flow
speed U&, will be presented in a separate article.
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FIG. 2. The change of U~ as v~; decreases.

ters as in Fig. 1. The critical v+, at which Up makes a
sudden change can be either greater than or less than
unity, depending on the parameters. The transition from
the L root to the H root depends on the fluctuation level
of Up. If it is very low, Up will stay on the L root as v+;
decreases and will not make the transition to the H root
until the L root disappears. (We employ this rule in ob-
taining Fig. 2.) If, on the other hand, the fluctuation
level of Up is high, the transition is determined by the
global minimum of a function that is proportional to the
rate of entropy production. ' The characteristic time
scale involved at the transition is of order v

When Up becomes more positive, the corresponding E,
becomes more negative if U, and dP/dr are fixed. As
discussed in Refs. 1-3, a more negative E„can suppress
the turbulent fluctuation level and thereby improve
confinement. The phenomenology of the L-H transition
based on the model discussed here can be summarized as
follows:

(i) Because of the plasma hearing, v+; in the edge re-
gion decreases.

(ii) At a critical value of v+; that depends on the de-
tails of the device, Up makes a transition from the L root
to the H root and becomes more positive. The corre-
sponding value of E, becomes more negative. An exam-
ple of the change of the Up at the transition is shown in

Fig. 2. The time scale of the transition is of the order of
—I
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