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We study the frequency lockings of two intrinsic hydrodynamic modes of a convecting
3He-superfluid-*He mixture by independently varying the Rayleigh and Prandtl numbers. We establish
points on the critical line in this parameter space using a transient technique to locate the spiral-node
transition in the interior of three resonance horns. Universal scaling is demonstrated at winding numbers
with golden-mean tails by computing the f(a) singularity spectrum.

PACS numbers: 47.25.—c, 05.45.+b, 67.60.Fp

The transition to chaos involving two incommensurate
frequencies has attracted great theoretical and experi-
mental interest. Theoretical predictions of global and lo-
cal universality are based on one-dimensional circle-map
models such as the sine circle map'~’ and include scaling
indices,!™ f(a) singularity spectra,** and trajectory
scaling functions.®’ Experimental verification of this
route to chaos has been made only for systems with an
internal periodic oscillation modulated by an external
drive of variable frequency and amplitude.®'° In the
more general case of two internal frequencies which ex-
hibit quasiperiodicity and mode locking,!""'? no compar-
ison has been made owing to the difficulty of varying two
internal control parameters over an appropriate region of
parameter space. Natural quasiperiodic states are fun-
damentally different than driven ones because the addi-
tional degree of freedom of the second internal mode al-
lows for feedback between the two oscillators. If predic-
tions of universality can be experimentally verified for
such states it would constitute a major extension of the
theory.

In this Letter we report the first measurement of
universal scaling properties in natural two-frequency
quasiperiodicity. We locate the critical line in the exper-
imental parameter space using a novel transient
Poincaré-section technique and demonstrate predicted
universality using a thermodynamic singularity-spectrum
analysis of experimental data taken at winding numbers
with golden-mean tails [the two experimental frequencies
do not naturally lock to a ratio close to the golden-mean
ratio of g =(~/5—1)/2]. We also present a new method
to compute f(a) singularity spectra which has superior
convergence properties to those of other reported tech-
niques. ¢

The experimental system, described in detail else-
where, '! is Rayleigh-Bénard convection of a *He-super-
fluid-*He mixture at temperatures close to 0.85 K.
When heated from above, this system behaves as a clas-

sical single-component fluid undergoing thermal convec-
tion. In this system Haucke and Ecke!' discovered a
rich and extensive region of quasiperiodicity and mode
locking using a local measure of the fluid temperature
field as the experimental probe of system dynamics. This
region is defined in terms of two dimensionless parame-
ters: the Rayleigh number R, proportional to the tem-
perature difference across the fluid layer, and the Prandtl
number o. In our system, we can vary o over a substan-
tial range (0.04 < 6 <0.15) by varying the mean tem-
perature, thereby allowing us enough control over R and
o to perform a two-parameter study of quasiperiodicity
and mode locking. At fixed o the fundamental frequen-
cies of the two internal modes, f; and f>, change rapidly
with increasing R, and the winding number (defined as
p=f2/f1) sweeps through many mode-locked intervals.
As o is decreased the coupling between modes increases
as evidenced by the widening and eventual overlap of
resonance horns and by complex internal structure inte-
rior to the horn boundaries. In Fig. 1 we show resonance
horns in the R-o parameter space which are bounded at
small R by the 1/7 resonance and at large R by the 1/6
resonance. Also shown are lightly shaded regions indi-
cating hysteresis and some of the internal structure of
the 2/13 resonance.'> One can roughly identify R as
proportional to @ (the bare winding number) and 1/c as
proportional to k, the nonlinearity parameter in the sine
circle map defined as

6,+1=6,+ Q — (k/2n)sin(2r6,) . 1)

For k > 0 the average rotation per iterate w is, in gen-
eral, not equal to @ and can take on rational values over
finite intervals in Q, i.e., mode-locked intervals with
w=P/Q, P and Q integer. The map loses its invertibility
at k=1 and chaos becomes possible at special irrational
numbers where universal predictions for the transition
from quasiperiodicity to chaos should apply.'™

In the circle map the critical line occurs at k =1, but
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FIG. 1. Resonance horns in parameter space of inverse

Prandtl number, 1/o vs normalized Rayleigh number R/R..
Dashed lines indicate golden-mean lines with winding numbers
oD, pD pI and pi. Lightly shaded regions indicate hys-
teresis; the interior structure of the 2/13 horn consists of re-
gions of stable “spiral” periodic cycles and secondary Hopf bi-
furcation SHB of those periodic cycles. Also shown are es-
timated locations of the critical line from analysis of spiral

periodic cycles (@) and where f(a) was calculated (0).

in the experimental parameter space the critical line may
be quite complex and irregular. This was suggested by a
two-dimensional map simulation'*!5 in which the critical
line was defined as the set of points along which the in-
variant circle loses its smoothness. One place this occurs
is in the interior of a resonance horn where the periodic
points change from nodal stability (two real eigenvalues)
to spiral stability (complex conjugate eigenvalues), des-
troying the smooth invariant curve. We similarly consid-
er the critical line in the experiment to consist of the
locus of the minima of 1/c values for which a spiral
periodic point exists inside each resonance horn. To lo-
cate the spiral fixed points we analyze transient Poincaré
sections, produced by a step change in R. At each edge
of a horn the eigenvalues of the periodic points are both
real since mode locking occurs as a saddle-node bifurca-
tion on the invariant circle. In the interior, however, the
eigenvalues can become complex. As an example, in Fig.
2 we show a spiral periodic cycle in the 2/13 resonance
horn from which we extract both the radial contraction
rate A, and the angular rotation rate ;. In Fig. 3 we
show the radial and angular eigenvalues as functions of
R/R. for 1/c=14.77. For 14.56 < 1/0<14.66 we can
not distinguish between real and complex eigenvalues.
For 1/0 <14.56 there are two real eigenvalues. The
difficulty in distinguishing spirals, when the two eigen-
values are nearly equal, sets our resolution of the critical
line which we estimate to be at 1/c=14.62+0.03 for
R/R.=12.05. Similar measurements of the 3/19 and
4/25 horns yield spiral transitions at 1/c=14.72 %+ 0.04
(R/R,=12.12) and 1/0c=14.70%+0.04 (R/R,=12.17),
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FIG. 2. Transient Poincaré section showing spiral approach
to a periodic point in the 2/13 resonance horn; R/R.=12.025
and 1/0=14.77. The solid curves are guides to the eye.
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FIG. 3. Eigenvalues for 2/13 resonance horn vs R/R. with
1/6=14.77. (a) Radial contraction rate A, in units of phase-
space distance per iterate; (b) angular rotation rate A; in units
of radians per iterate. The solid curves are guides to the eye.
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respectively. In Fig. 1 we have drawn the critical line as
determined by the spiral-node transitions and by upper
bounds imposed by hysteresis regions. The lines labeled
pé") in Fig. 1 are defined by winding-number sequences
1/[6+1/ln+1/[1+1/[1+ - - - 111]. At the crossings of
the critical line and any of these lines of constant pé") we
expect to observe universal behavior. (These winding
numbers have the same asymptotic form as the golden
mean and thus should have the same universal scaling
properties.) In particular we can compare experimental-
ly obtained f(a) curves with theoretical results.

The experimental data consist of time series from the
local temperature sensor.!! From the data we recon-
struct the attractor using delay coordinates and obtain
Poincaré sections as the intersection of phase-space tra-
jectories with a plane in that space. An example of the
Poincaré sections we obtain is shown in Fig. 4 for param-
eter values R/R.=12.220 and 1/0=14.57, close to criti-
cality, with a rotation number within 50 ppm of pé“) [the
effective rotation number @ of the section is related to
the winding number of p by @ =1/p (mod1)]. We can
approximate the section by a periodic cycle with winding
number P/Q, where P/Q is rational approximant to p.
For this cycle the closest point in space to some initial
point on the section occurs after r time steps, where r
satisfies 7P =1 (modQ). We use this to determine a
series of consecutive segments Ay along the section. In
the inset of Fig. 4 we see the union of these segments for
P/Q =18/129 and the smooth, linelike nature of the sec-
tion. If the manifold is not one dimensional, as happens
for higher values of 1/o, then there is no choice of r that
gives a smooth curve.

Using these segments we would like to establish that
the data in Fig. 4 were generated by a dynamics in the
same universality class as the cubic circle map. We will
do so by comparing the multifractal properties of the ex-
perimental attractor with those given by the renormal-
ization group (RG) calculations. We use a “thermo-
dynamic” formalism® and interpret the segments as
states of a statistical mechanical system. The “pressure”
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FIG. 4. Poincaré section for R/R.=12.220, 1/c=14.57,
and p within 50 ppm of p{* and with t=(7/3) ~'. Inset: Con-
nected segments as discussed in text.

p(B) is given by

p(B)=—1lim X |A|?/InQ. )
Q— k=0

1=
From the pressure we can compute its derivative, the
“energy” u(B), and the “entropy” s(8) =pu — p, and use
these to implicitly compute the singularity spectrum
f(a) =s/u, with a=1/u. We have directly verified that
the limit in (2) exists by plotting the right-hand side as a
function of Q and seeing that it converges as (InQ) ~'.
For monotonic circle maps at golden-mean tail rotation
number the theoretical pressure can be approximated to
within 1% by two paramcters,6 s1 and s,, with
p(B) =—Inz(B)/Inw, and z being the smallest root of

230 —s))PU—5)P—U—5s82)(0 =552 =0. (3)

The two parameters exactly give the range of «
(amin =Inw,/Ins; and amax=21nwg/lnsz) and can be
computed from the RG universal function. If we com-
pute f(a) directly from (2) or by the Legendre trans-
form of the generalized dimensions,* we are effectively
determining s, and s, from just two segments: the
smallest and the largest among the Q segments. In the
cubic circle map the largest segment converges with a
factor (1.28857...) "2 and thus very long cycles are
required for an accurate determination of f(a). Our
method then is to compute the pressure from the
definition (2), obtain z, and then use a nonlinear least-
squares fit to determine the two universal scales s; and s,
in (3). To avoid using just two of the segments we in-
clude only pressure values for small IBI, i.e., the transi-
tion region of the energy. More details will be given else-
where.!® We have verified that the method is insensitive
to the precise cutoff in B. Along the line pé‘” we obtain
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FIG. 5. The f(a) curve obtained from the experimental
data of Fig. 4 (®@). The solid curve is the f(a) curve for a map
in the sine-circle-map universality class. The error bars for @
smaller than 1.1 are of the order of the circles and are not plot-
ted. The dashed line is computed from a subcritical data set
with R/R. =12.375 and 1/0c=14.17.
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51 =0.47 +£0.01 and 5s,=0.61 £0.2. The values predict-
ed by the RG calculations for a cubic map are 5, =0.467
and s,=0.602. Using fitted values we obtain the f(a)
curve in Fig. 5. The scatter of s; and s, give us a range
for the f(a) spectra and we use this to determine the er-
ror bars on the plot. Also, in the figure we have plotted
f(a) for a subcritical data set.

From s, and s, we can compute the value of the ex-
ponent that characterizes the universality class of a map.
If we consider inflection points of the type 6]20|V7!,
then we can compute that v=2Ins/Ins,. From the data
for the rotation number p{* we get that v® =3.1+0.3,
putting the data in the universality class of the sine circle
map [Eq. (1)]. The other rotation numbers give similar
results, v®=29+0.3and v¥ =28+ 0.4, whereas the
series for p! fails to exhibit criticality.

We acknowledge conversations with I. G. Kevrekidis.
One of us R.M. would like to thank the Center for Non-
linear Studies for its hospitality and support and to ac-
knowledge suggestions by J. Lowenstein. This work was
supported by funds provided by the Department of Ener-
gy, Office of Basic Energy Sciences, Division of Material
Science.

IS. Shenker, Physica (Amsterdam) 5D, 405 (1982); M.
Feigenbaum, L. P. Kadanoff, and S. Shenker, Physica (Am-
sterdam) 5D, 370 (1982); S. Ostlund, D. Rand, J. Sethna, and

2360

E. Siggia, Phys. Rev. Lett. 49, 132 (1982); Physica (Amster-
dam) 8D, 303 (1983).

2M. Jensen, P. Bak, and T. Bohr, Phys. Rev. A 30, 1960
(1984).

3P. Cvitanovié, M. Jensen, L. Kadanoff, and I. Procaccia,
Phys. Rev. Lett. 55, 343 (1985).

4H. Hentschel and I. Procaccia, Physica (Amsterdam) 8D,
435 (1983); T. Halsey, M. Jensen, L. Kadanoff, I. Procaccia,
and B. Shraiman, Phys. Rev. A 33, 1141 (1986).

SM. Jensen, L. Kadanoff, A. Libchaber, I. Procaccia, and J.
Stavans, Phys. Rev. Lett. 55, 2798 (1985).

6M. Feigenbaum, J. Stat. Phys. 46, 919 (1987); 46, 925
(1987).

M. J. Feigenbaum, Nonlinearity 1, 577 (1988); Commun.
Math. Phys. 77, 65 (1980).

8J. Stavans, F. Heslot, and A. Libchaber, Phys. Rev. Lett.
55, 596 (1985).

D. Olinger and K. Sreenivasan, Phys. Rev. Lett. 60, 797
(1988).

10F Gwinn and R. Westervelt, Phys. Rev. Lett. 59, 156
(1987).

I'H. Haucke and R. Ecke, Physica (Amsterdam) 25D, 307
(1987).

12A. Libchaber, S. Fauve, and C. Laroche, Physica (Amster-
dam) 7D, 73 (1983); J. Gollub and S. Benson, J. Fluid Mech.
100, 449 (1980); M. Dubois and P. Berge, Phys. Lett. 76A, 53
(1980).

3R. Ecke and I. Kevrekidis, Phys. Lett. A 131, 344 (1988).

14T, Bohr, Phys. Rev. Lett. 54, 1737 (1985).

15X. Wang, R. Mainieri, and J. Lowenstein (to be published).

16R. E. Ecke, R. Mainieri, and T. S. Sullivan (to be pub-
lished).



R/R.

FIG. 1. Resonance horns in parameter space of inverse
Prandtl number, 1/o vs normalized Rayleigh number R/R..
Dashed lines indicate golden-mean lines with winding numbers
el p pi and piY. Lightly shaded regions indicate hys-
teresis; the interior structure of the 2/13 horn consists of re-
gions of stable “spiral™ periodic cycles and secondary Hopf bi-
furcation SHB of those periodic cycles. Also shown are es-
timated locations of the critical line from analysis of spiral
periodic cycles (@) and where f(a) was calculated (0).



