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We study the frequency lockings of two intrinsic hydrodynamic modes of a convecting
He-superfluid- He mixture by independently varying the Rayleigh and Prandtl numbers. We establish

points on the critical line in this parameter space using a transient technique to locate the spiral-node
transition in the interior of three resonance horns. Universal scaling is demonstrated at winding numbers
with golden-mean tails by computing the f(a) singularity spectrum.

PACS numbers: 47.25.—c, 05.45.+b, 67.60.Fp

The transition to chaos involving two incommensurate
frequencies has attracted great theoretical and experi-
mental interest. Theoretical predictions of global and lo-
cal universality are based on one-dimensional circle-map
models such as the sine circle map' and include scaling
indices, ' f(a) singularity spectra, ' and trajectory
scaling functions. ' Experimental verification of this
route to chaos has been made only for systems with an
internal periodic oscillation modulated by an external
drive of variable frequency and amplitude. ' In the
more general case of two internal frequencies which ex-
hibit quasiperiodicity and mode locking, "' no compar-
ison has been made owing to the difficulty of varying two
internal control parameters over an appropriate region of
parameter space. Natural quasiperiodic states are fun-
damentally diAerent than driven ones because the addi-
tional degree of freedom of the second internal mode al-
lows for feedback between the two oscillators. If predic-
tions of universality can be experimentally verified for
such states it would constitute a major extension of the
theory.

In this Letter we report the first measurement of
universal scaling properties in natural two-frequency
quasiperiodicity. We locate the critical line in the exper-
imental parameter space using a novel transient
Poincare-section technique and demonstrate predicted
universality using a thermodynamic singularity-spectrum
analysis of experimental data taken at winding numbers
with golden-mean tails [the two experimental frequencies
do not naturally lock to a ratio close to the golden-mean
ratio of toe—= (JS —1)/2l. We also present a new method
to compute f(a) singularity spectra which has superior
convergence properties to those of other reported tech-
niques. '

The experimental system, described in detail else-
where, " is Rayleigh-Benard convection of a He-super-
fluid- He mixture at temperatures close to 0.85 K.
When heated from above, this system behaves as a clas-

sical single-component fluid undergoing thermal convec-
tion. In this system Haucke and Ecke" discovered a
rich and extensive region of quasiperiodicity and mode
locking using a local measure of the fluid temperature
field as the experimental probe of system dynamics. This
region is defined in terms of two dimensionless parame-
ters: the Rayleigh number R, proportional to the tem-
perature diff'erence across the fluid layer, and the Prandtl
number a. In our system, we can vary o. over a substan-
tial range (0.04 & o &0.15) by varying the mean tem-
perature, thereby allowing us enough control over R and
cz to perform a two-parameter study of quasiperiodicity
and mode locking. At fixed o. the fundamental frequen-
cies of the two internal modes, f ~

and f2, change rapidly
with increasing R, and the winding number (defined as
p=f2/f~) sweeps through many mode-locked intervals.
As a is decreased the coupling between modes increases
as evidenced by the widening and eventual overlap of
resonance horns and by complex internal structure inte-
rior to the horn boundaries. In Fig. 1 we show resonance
horns in the R-a parameter space which are bounded at
small R by the 1/7 resonance and at large R by the 1/6
resonance. Also shown are lightly shaded regions indi-
cating hysteresis and some of the internal structure of
the 2/13 resonance. ' One can roughly identify R as
proportional to 0 (the bare winding number) and 1/tr as
proportional to k, the nonlinearity parameter in the sine
circle map defined as

8„~1=8„+0 —(k/2tr)sin(2tr8„) .

For k & 0 the average rotation per iterate m is, in gen-
eral, not equal to 0, and can take on rational values over
finite intervals in A, i.e., mode-locked intervals with
to =P/Q, P and Q integer. The map loses its invertibility
at k =1 and chaos becomes possible at special irrational
numbers where universal predictions for the transition
from quasiperiodicity to chaos should apply. '

In the circle map the critical line occurs at k =1, but
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respectively. In Fig. 1 we have drawn the critical line as
determined by the spiral-node transitions and by upper
bounds imposed by hysteresis regions. The lines labeled
pg~" in Fig. 1 are defined by winding-number sequences
I/[6+ I/[n+ I/[I+ I/[I+ . ]l]l. At the crossings of
the critical line and any of these lines of constant p~" we
expect to observe universal behavior. (These winding
numbers have the same asymptotic form as the golden
mean and thus should have the same universal scaling
properties. ) In particular we can compare experimental-
ly obtained f(a) curves with theoretical results.

The experimental data consist of time series from the
local temperature sensor. " From the data we recon-
struct the attractor using delay coordinates and obtain
Poincare sections as the intersection of phase-space tra-
jectories with a plane in that space. An example of the
Poincare sections we obtain is shown in Fig. 4 for param-
eter values R/R, =12.220 and I/o =14.57, close to criti-
cality, with a rotation number within 50 ppm of ps [the
eff'ective rotation number co of the section is related to
the winding number of p by co=i/p (modl)]. We can
approximate the section by a periodic cycle with winding
number P/Q, where P/Q is rational approximant to p.
For this cycle the closest point in space to some initial
point on the section occurs after r time steps, where r
satisfies rP=I (modQ). We use this to determine a
series of consecutive segments d k along the section. In
the inset of Fig. 4 we see the union of these segments for
P/Q =18/129 and the smooth, linelike nature of the sec-
tion. If the manifold is not one dimensional, as happens
for higher values of 1/0, then there is no choice of r that
gives a smooth curve.

Using these segments we would like to establish that
the data in Fig. 4 were generated by a dynamics in the
same universality class as the cubic circle map. We will

do so by comparing the multifractal properties of the ex-
perimental attractor with those given by the renormal-
ization group (RG) calculations. We use a "thermo-
dynamic" formalism and interpret the segments as
states of a statistical mechanical system. The "pressure"

p(P) is given by

p(P) = —»m g I &k I'/»Q.Q- 1 ~k(Q
From the pressure we can compute its derivative, the
"energy" u(P), and the "entropy" s(P) =Pu —p, and use
these to implicitly compute the singularity spectrum
f(a) =s/u, with a=1/u. We have directly verified that
the limit in (2) exists by plotting the right-hand side as a
function of Q and seeing that it converges as (lnQ)
For monotonic circle maps at golden-mean tail rotation
number the theoretical pressure can be approximated to
within 1% by two parameters, s i and s 2, with

p(P) = —Inz(P)/incog and z being the smallest root of

z (1 —s )~(I —s )~ —(I —s~z)(1 —s~z ) =0. (3)

The two parameters exactly give the range of a
(a;„=Incog/Ins i and a,„=2 Incog/Ins z) and can be
computed from the RG universal function. If we com-
pute f(a) directly from (2) or by the Legendre trans-
form of the generalized dimensions, we are eA'ectively

determining s& and s2 from just two segments: the
smallest and the largest among the Q segments. In the
cubic circle map the largest segment converges with a
factor (1.28857. . . ) '"~, and thus very long cycles are
required for an accurate determination of f(a). Our
method then is to compute the pressure from the
definition (2), obtain z, and then use a nonlinear least-
squares fit to determine the two universal scales si and s2
in (3). To avoid using just two of the segments we in-
clude only pressure values for small I P I, i.e., the transi-
tion region of the energy. More details will be given else-
where. ' We have verified that the method is insensitive
to the precise cutoff in P. Along the line pg we obtain
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FIG. 4. Poincare section for R/R, =12.220, I/cr=14. 57,

and p within 50 ppm of pg and with r = (7f2) '. Inset: Con-
nected segments as discussed in text.

FIG. 5. The f(a) curve obtained from the experimental
data of Fig. 4 (e). The solid curve is the f(a) curve for a map
in the sine-circle-map universality class. The error bars for a
smaller than 1.1 are of the order of the circles and are not plot-
ted. The dashed line is computed from a subcritical data set
with R/R, =12.375 and 1/o =14.17.
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si =0.47 ~ 0.01 and s2=0.61+ 0.2. The values predict-
ed by the RG calculations for a cubic map are s

&
=0.467

and s2=0.602. Using fitted values we obtain the f(a)
curve in Fig. 5. The scatter of sI and s2 give us a range
for the f(a) spectra and we use this to determine the er-
ror bars on the plot. Also, in the figure we have plotted
f(a) for a subcritical data set.

From si and s2 we can compute the value of the ex-
ponent that characterizes the universality class of a map.
If we consider inilection points of the type (1) 20I '
then we can compute that v=21nsi/Insq. From the data
for the rotation number pg we get that v =3.1+ 0.3,
putting the data in the universality class of the sine circle
map [Eq. (I)]. The other rotation numbers give similar
results, v =2.9~0.3 and v =2.8~0.4, whereas the
series for p

' fails to exhibit criticality.
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