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General Relativity without the Metric
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A new class of generally covariant gauge theories is introduced. The only field in addition to the
gauge connection is a scalar-density Lagrange multiplier. For the group SO(3, C) [SO(3,R)] in four di-
mensions and particular coupling constants, the theory is equivalent to complex [Euclidean] general rela-
tivity, modulo an important degeneracy. The spacetime metric is constructed from the curvature in a
solution. A canonical analysis leads directly to Ashtekar s Hamiltonian formalism. The general solution
to the four diffeomorphism constraints in the nondegenerate case is given.
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In the search for a more unified description of physics
the analogy between general relativity (GR) and gauge
theories has often been stretched. Gauge fields are de-
scribed using connections whereas in GR the gravitation-
al field is described in terms of the spacetime metric.
While a spacetime connection always exists in GR, it is a
derivative quantity of the metric, and the vacuum Ein-
stein equation is really a condition on the metric, not on
the connection. In this Letter we strengthen the analogy
by expressing the vacuum Einstein equation in four
spacetime dimensions purely in terms of the self-dual
spin connection. The metric will play no role whatsoev-
er, although in a solution it can be reconstructed from
the curvature. As a byproduct we have found a new
class of generally covariant gauge theories with local de-
grees of freedom.

Previous work on formulating GR as a gauge theory
has fallen short of the goal in that the spacetime metric
always entered as a fundamental field in one way or
another. An early attempt based on a Palatini-type ac-
tion involved both an SO(3, 1) connection and an ortho-
normal tetrad (the "square root" of the metric) as fun-
damental variables. ' Other work involved reinterpreting
the tetrad as a connection gauging the group of space-
time translations. While this is possible, the tetrad
remains a basic variable and the equations of the theory
are unchanged. More recently, a new Hamiltonian for-
mulation of (3+1)-dimensional GR was discovered by
Ashtekar in which the canonical coordinates are identi-
cal to those of an SO(3,C) Yang-Mills theory, with the
self-dual spin connection conjugate to the orthonormal
spatial triad. A covariant Palatini-type action was
found which leads directly to this new Hamiltonian for-
malism; however, just as in the earlier Palatini-type ac-
tions, the tetrad entered as an independent field.

Here we complete the covariant gauge-theory formu-
lation of vacuum GR by exhibiting a new action for com-

plex GR which is a functional only of the self-dual spin
connection and a scalar-density Lagrange multiplier
field. It has the form of a constrained nonlinear o. model
which is polynomial in the gauge potential and its first
derivatives, and quadratic in "time ' derivatives. The
spacetime metric does not appear in the action in any
form We sho. w (1) how the field equations which follow
from this action reproduce the Einstein equation (modu-
lo an important degeneracy), (2) how the spacetime
metric can be built from the curvature in a solution, (3)
how to impose conditions which select real Lorentzian or
Euclidean solutions, (4) how Ashtekar's formulation of
GR follows from the Hamiltonian analysis of this new
action, and (5) how to construct the general solution of
the four diff'eomorphism constraints of the Ashtekar for-
malism in the nondegenerate case.

The discovery of a metric-free action for GR opens a
new manifestly covariant line of attack on the problem of
quantum gravity in concert with Ashtekar's canonical
quantization program. It should be mentioned at the
outset that flat spacetime does not naturally emerge from
the theory at the classical level because an invertible
Weyl curvature is needed to construct the spacetime
metric in a solution. In fact, the classical perturbation
theory about flat space does not even exist because the
linearized dynamics is completely degenerate in that
case. This degeneracy does not immediately contradict
observation, however, and may, in any case, be irrelevant
at the quantum level.

Other applications of these results remain largely to be
seen. The fact that the Einstein equation can be written
purely in terms of the left-handed spin connection may
be of relevance in the search for a twistor theoretic con-
struction of the general vacuum solution. More general-
ly, it may be useful in understanding the structure of the
space of solutions. In another direction, this class of gen-
erally covariant gauge theories other than GR may be of
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interest in its own right. Moreover, the larger question
of unification of gauge interactions including gravity
might be usefully investigated in this framework.

Here is the action,

S[ri,A'] =
J h,b,d(ri F'. AF )F'AF

with

habcd + (~ca ~bd + ~cb ~ad ) +P~ab ~cd . (2)

AXb I PabgcA

DZ'=0,
F& =+ahab

(3a)

(3b)

(3c)

where D denotes the covariant exterior derivative with
respect to A, DX:=dZ'+|. 'b, A AZ'. The constraint
(3a) says that the tracefree part of X'AZ vanishes,
which implies the existence of a set of four (complex)
one-forms 8' such that Z' is determined by the (Min-
kowski) self-dual part of O'A OP, i.e. ,

Z =0 A0 —i 2 ~ b, 0 A0'. (4)

When (3) holds with X'AZ, AO, the spacetime metric

The quantity g is a totally antisymmetric fourth-rank
tensor, equivalent to a scalar density of weight —1, and
the quantity A' is an SO(3,C) connection with curvature
F:=dA'+

2 t."b,A AA'. Lower-case latin letters from
the beginning of the alphabet range from 1 to 3 and are
raised and lowered with the Kronecker 6. The "wedge"
notation "A" denotes antisymmetric outer product of
forms, and the dot "." just indicates the contraction
g"' F„,F~ . We shall also make use of the three- and
four-dimensional Levi-Civita antisymmetric tensor densi-
ties e"'~ and e'~, which have components equal to ~1
for even or odd permutations of the indices and vanish
whenever two indices coincide.

General relativity corresponds to the choice of cou-
pling constants a/p= —1 for the two SO(3,C)-invariant
"traces" in the action. Other choices for the couplings
or the group define other, generally covariant gauge
theories. Generalizations of (1) to any spacetime dimen-
sion d are obtained by contracting d curvatures with two
Levi-Civita e tensors and a constant rank-d group-in-
variant tensor, and multiplying by a scalar density of
weight —1. The action remains second order in "time"
derivatives due to the antisymmetry of the e's. We do
not know of a modification of (1) corresponding to GR
with a cosmological constant.

One way to see that (1) is indeed an action for GR in
the nondegenerate case is provided by the equivalence of
its Hamiltonian formulation with that of Ref. 3. Alter-
natively, in a covariant approach, we first reexpress the
vacuum Einstein equation in terms of a set of three
(complex) spacetime two-forms X', an SO(3, C) connec-
tion A', and a symmetric traceless tensor y b as

ga ~ Oa+ ] a bc (5)

In the presence of (3a) and (3b), (3c) says that the only
nonvanishing part of the self-dual projection of the cur-
vature of ro'& is the pure spin-2, (Weyl) part, so that the
metric g„,must be Ricci flat.

Varying ri and A' in the action (1) we obtain the
equations of motion

habcd(e. F AF )F'AF =0,
D[h, , (ri F'AF )F'] =0.

(6a)

(6b)

With the definitions

Zd. =habcd(ri F AF")F',

y'b. = [[h(ri. Fn F)]
(7a)

(7b)

the field equations (6) imply the Einstein equations (3)
provided the coupling constants have the ratio a/p = —l.
Indeed, (3b) follows from (6b), (3c) is true by definition,
and it is straightforward to show using (6a) and a/P
= —1 that y'b is tracefree and (3a) is also true. (The
characteristic equation satisfied by any 3&3 matrix is
useful in showing these last two steps. )

Summarizing our results up to this point, given a con-
nection A and a totally antisymmetric tensor g satisfy-
ing (6a) and (6b), the tetrad determined via (4) by Z' of
Eq. (7a) is a vacuum solution of Einstein's equation.
Conversely, every vacuum solution with dety~0 arises
in this manner from A' given by (5) together with q""a
=i(2adety) '8"', where 8"'a is the inverse volume
element. These results are local in nature; if the mani-
fold is not orientable or does not admit a spin structure,
there can be obstructions to their global form. Note that
within each diAeomorphism class of solutions one can
find a solution where, at least locally, g has any
prescribed value. Using this freedom to fix g, GR is thus
expressed purely in terms of the self-dual spin connection

The equivalence between the sets of Eqs. (3) and (6)

g„,:=0„0~@& is Ricci flat, i.e., it satisfies the vacuum
Einstein equation.

To better understand the role of Eq. (3a), note that if
the tracefree part of X'AX were nonzero, it would
determine at least one eigenvector, thus breaking the
SO(3,C) symmetry. Since a spacetime metric does not
break this symmetry, (3a) is necessary if Z' is to be
derivable from a tetrad O'. The five conditions (3a) on
the 18 degrees of freedom in Z' leave 13 degrees of free-
dom, which is equal to the 16 degrees of freedom in 0
less the three dimensions of anti-self-dual Lorentz trans-
formations under which (4) is invariant.

The tetrad 0' determines a metric compatible spin
connection cop via the torsion-free condition d0
+ co'p A 8~ 0. Equation (3b) implies that, when
Z'AX, &0, A' is determined by the self-dual part of co ~,
i.e.,
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breaks down when det[h(rI FAF)] =0 or dety=0.
That is, solutions to (3) with dety=O do not arise via
(7) from solutions to (6). For example, ordinary fiat
space with a nondegenerate Z' is in this category. More
generally, according to the algebraic classification of the
Weyl tensor, dety=0 if and only if (i) the Weyl tensor
is of type [1111] and there exists a Lorentz frame in
which the gravitational principal null directions lie at the
vertices of a square, or (ii) the Weyl tensor is of type
[31], [4[, or [—];' there are no vacuum solutions for the
case (i), however. " On the other hand, solutions to (6)
with det[h(ri FAF)] =0 do not arise from solutions to
(3). For example, all "static" configurations (Ao=0,
80A;=0, ri=anything) are solutions to (6), but do not
arise from solutions to (3), since Z' =0 and y, b

=~.
To select real Lorentzian solutions, one must impose

the conditions

with

2 G,'b(q, A;)(A,' D;Ao)(Ai D—iAo), —

G,'b (rI, A; ):=aha, bd B"BJ",

Blc. ~lJkFcjk ~ (10)

where g is now thought of as a scalar density of weight
—1. The action thus takes the form of a nonlinear o.

model, with degeneracies arising from difI'eomorphism
and SO(3, C) invariances. More precisely, let the canon-
ical momenta be defined in the usual way by rr,":=bL/
bA„',ir„:=bL/b'ri. Then one has

z'=O' F z =0 z =0 (11)
Since G,'Jb is degenerate, the "velocities" A,' are not
uniquely determined by the momenta z,', and there are
three corresponding constraints,

e- xjB"=0 (12a)

The vanishing of n, gives the Gauss-law constraint,

D;x,' =0, (12b)

Z'AZ =0, Re(Z'AZ, ) =0,
which imply that 8' can be chosen real in (4) (up to a
possible irrelevant overall eighth root of unity). Given
the definition of Z' in (7a) these become sixth-order
algebraic conditions on the curvature F'. (When y'b is
nondegenerate the first condition is equivalent to the
second-order condition F'AF =0.) Real Euclidean
solutions are selected by requiring simply that A' and g
be real, since then Z' of (7a) is real and there exists a
real tetrad 8' satisfying (4) with the i replaced by either
1 or —1 in the second term.

The Hamiltonian formulation of the theory is derived
from a 3+1 decomposition of the action (1) with respect
to coordinates (x,x'), treating x as the time coordi-
nate. First, we simply rewrite (1) as

in the usual way as a secondary constraint. Finally, as-
suming the "magnetic" field (10) to be nondegenerate,
the vanishing of x„gives rise to a secondary constraint
which, modulo a combination of (12a) and (12b), takes
the form

e,b, e; kz"xj B '=0 (12c)

The constraints (12a), (12b), and (12c) are precisely
those found by Ashtekar via a canonical transformation
in the usual phase space of GR. The Hamiltonian is an
arbitrary linear combination of these constraints (up to a
boundary term) and evolution is generated by the usual
Hamiltonian equations. When the magnetic field (10) is
degenerate, the "field space metric" G,'Jb has additional
degeneracies and the evolution is correspondingly under-
determined.

The initial-value constraints of the Hamiltonian for-
malism are merely those field equations which do not in-
volve second time derivatives. Since the momentum z,' is
related to the spatial component of the two-form defined
in (7a) by ir,' =e' Zjk„we have by inverting (3c) that

i (
—1) Bib [~2 & t ~2] bBi (13)

where p,b. =(dety) ' y, b, and the tracelessness of y
has been used in the second equality. Conversely, given
any connection A,', the diffeomorphism constraints (12a)
and (12c) are identically satisfied when ir,' has the form
(13), with p, b tracefree. When B" is nondegenerate,
this five-parameter family is the general solution to these
constraints. All that remain are the Gauss-law con-
straints, which now take the form

B"D;[y' —,
' try']. b =0, — (14)

where the Bianchi identity D;B"=0 has been used. The
two-parameter family of tracefree solutions p,b to (14)
represent the unconstrained degrees of freedom in the
momenta conjugate to the connection. This solution of
the diffeomorphism constraints generalizes the solution
z,'=A 'B,' for the case of self-dual solutions with cos-
mological constant found in Ref. 12.

We did not discover the action (1) by virtue of its
uniqueness, although in retrospect that would have been
possible. Rather we began with a new action for GR,

S[Z',A', y,b] =& Z'AF, —
2 y,bZ'AZ

and proceeded to eliminate both Z' and y,b via their
equations of motion. This alternate formulation allows
one to incorporate couplings to gauge fields, fermions,
and the gravitino field of supergravity. The results of
Ref. 7 may be useful for the inclusion of matter cou-
plings in the pure connection formulation presented in
this Letter.

This project grew out of a remark made by Lionel
Mason to the efect that the self-dual two-form Z' can
be employed as the basic variable in general relativity. '
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