
VOLUME 63, NUMBER 21 PHYSICAL REVIEW LETTERS 20 NOVEMBER 1989

Antiadiabatic Theorem for Crossing Levels

F. E. Low
Center for Theoretical Physics, Laboratory for Nuclear Sciencea, nd Department of Physics,

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
(Received 3 May 1989)

We consider in this Letter the time dependence of a system for which two levels (which are not, in

general, decoupled) accidentally cross (or almost cross) for some value of the parameters of the Hamil-
tonian. We show that for a well-defined class of crossings or narrowly avoided crossings, in which the
Hamiltonian changes slowly on its own scale, the system will behave oppositely to the usual adiabatic
rule.
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We consider in this Letter the time dependence of a
system for which two levels (which are not, in general,
decoupled) accidentally cross (or almost cross) for some
value of the parameters of the Hamiltonian. We show
that for a well-defined class of crossings or narrowly
avoided crossings the system will behave oppositely to
the usual adiabatic rule. That is, if the avoided crossing
energy is called zero, the system will, with probability
close to 1, jump from the state of positive energy to the
one of negative energy. This has been known since 1932
for the Landau-Zener ' process; we consider here a
different situation, one in which 8 and p [as defined in

Eq. (2) belowl are slowly changing at the point of cross-
ing.

To summarize the result, we characterize the two-
state system by a Hamiltonian expressed in terms of an
equivalent (negative) magnetic field (and unit magnetic
moment):

H =B(t).cr,

with

B(t) =B(isin8cosp+ jsin8sinp+kcos8),

We choose as eigenfunctions of H
r

cos(8/2)e "I'; ~e, t,
exp —iy(t) + —' cos8dp4 0~~0

(6a)

with eigenvalue B, and

sin (8/2) e "I'; ~ e, t
;&12 exp iy(t) ——'„cos8dp2»0.~0

i

(6b)

with eigenvalue —B. Here

y(t) =J, dt'8(t') (7)

and 8p, pp are the values of 8 and p at t =tp, when the in-
itial state is specified. The phases are chosen to make
the self-coupling of u+ and u —in a time-dependent field
vanish.

The Schrodinger equation for an arbitrary state
g =a+u++a u —is

where 8, 8, and p are functions of t and a, os, and o,
are the usual Pauli matrices. Then our result holds pro-
vided

Bv-a++ exp 2itir(t) —i „cos8dp v+,

and

a =O (ga)

dB
dt

2
dO

dB
+sin 8 d

dB

2

B 0
«1. Bv+a +exp —2itit(t)+i J cos8dp v, a+ =0,

(sb)
The Landau-Zener case has

B(t) =kBpt/T+iB„, (4)

B2

I dB/dt
/

((1 . (s)

We discuss first the case where the energy eigenvalues
~

~
8

~

= ~ 8 go exactly through zero.

with Bp/T and 8, constant. The antiadiabatic behavior
there results if

where the U w are the u+ with the explicit factors

i
exp +' iy(t) ——

J cosH dp

removed.
We wish to study the time dependence of a ~ for the

case where the time dependence of 0 is very slow on the
scale of H itself. That is, we assume dt =Tdk, where the
time T is large on an appropriate scale (to be discussed
below). 8, 8, and p are ordinary functions of X which
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may change substantially as A. goes from Xp to kf. The
conditions of the usual adiabatic theorem are violated,
however, in that B(k) goes through zero between kv and

We choose the point A, =0 to be the zero of B(A,).
For k not too far from zero we will have

B=Bp(k+aA. + )

and

In terms of A. , Eq. (Sb) for a —becomes

da- t Bv+
dX,

+exp —2iy(t)+i Jl cos8dp v, ~+ =0.

p= TBp
QA,+ + . —const

2 3
(10) Assuming smooth behavior of 8 and p near 1=0, tt~(&p)

= 1, and a —(ko) =0 we find, setting a+ =1 in Eq. (11),
I

a (X) —— exp —2iBv TJ X0

Bv~
dX exp i cos8dp v

p

i@0e (i2)

- (1 i )—
280T

i t/2 Bv+e' ' exp i J cos8dp v
i-0

(i3)

where Np is a constant phase.
Thus, for large B0T, the transition amplitude from u+

to u —goes like 1/(BOT) ' . Note that the adiabatically
forbidden transition amplitude with an energy gap hB
would go like 1/ABT. Note also, however, that in our
case it is positive to positive energy that is forbidden. In
the energy-gap case it is positive to negative energy that
would be forbidden; here, the latter is enforced.

The bracketed expression in Eq. (13) is

fO Bv+
exp i cos8dp v —,4

d8 . . dy= ——exp i cos8dp +i sin8J dX, dX,
(i4)

and can be shown to be rotationally invariant (for 8 and

p real polar angles of a magnetic field) as must be the
case.

The transition probability is

tr d8 +. p dy (15)
48 T d~

""
d~p = l~- I'=

or, expressed in terms of B and dB/dt,
r ' 2

7E d8 . , dy
p +sin 0

4 dB dB
dB
dt

g B 0

Several comments can be made: Evidently, any coupling
of v —and v+ requires that 8 or p be changing as B goes
through zero. This is clearly a requirement for the case
of an actual magnetic field, since the wave functions v+
depend only on the field direction. For a more general
system which can be reduced to a two-state problem, the
effective two-state Hamiltonian will, for small X, contain
terms of order k arising from virtual transitions out of
the two states in question. It follows that the coefficients
d8/dB and dp/dB in Eq. (16) also depend on the spec-
trum of and matrix elements to higher states to which

the two states are coupled.

We are now in a position to characterize the well-
defined class of crossings referred to in the abstract.
First, the probability p must be small compared to 1 in
order to set a~ =1 in going from Eq. (11) to Eq. (12).
Second, the k term in y in Eq. (10) will be negligible in

the important range of integration provided

d B
dt2

' 3/2
dB
dt B 0

is also small compared to 1. The first of these conditions
is clearly required for the antiadiabatic behavior to hold.
The second is required for the explicit formula Eq. (16)
for the small violation of antiadiabaticity to hold as well.

The system we have considered is unrealistic, in that
two levels will rarely exactly cross. In particular, if two
levels do cross for a given set of internal parameters—magnitudes and direction of electric and magnetic
fields, for example —then a small change in one of the
parameters —for example, the relative angle of the two
fields —will not, in general, allow a new choice of the
other parameters that will maintain the crossing. (How-
ever, see below for an interesting exception. ) We should

then consider the case of levels that almost cross, and
show that our result holds there as well.

If the equivalent magnetic field does not go through
zero, B(t) cannot change sign, so that the vector 8 must

change sign by the transformation 0 8'=x —0 and
p~ p'=p+tr. The state of the system will go from en-

ergy l
B

l
to energy —

l B l
if the time during which 8

and p make this change is short enough so that the sud-
den approximation holds. This follows since the wave

function

cos(8/2)e

, sin(8/2)e'~t'

is in fact the wave function of a state of energy —
l
B l

after the change of 8 and p. That is, in terms of the new
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I/BpT))ka —) b » (BJ /Bp) (i7)

Note that the Landau-Zener ' formula holds for a
process that does not satisfy these inequalities, since
there the derivative dO/dX does not approach order unity
for any value of t or tb.

We consider as an example the n=2 states of a spin-
less, nonrelativistic hydrogen atom in electric and mag-
netic fields, E and 8, making an angle 0 with each other.
We pick E in the z direction, quantize along the z axis,
and for simplicity choose B in the x-z plane.

The Hamiltonian is then (with E and 8 in appropriate
units; i.e., if e and P are the actual magnetic fields, then
E =pe and B =pP, where p is the n =2, 5-P dipole ma-
trix element and p. is the Bohr magneton)

0 E 0 0

8„/J2 8„/J2E 0

0 8/J2 8,
0 8/J2 0

angles of the field, to within a phase,

sin (8'/2) e
—cos(8'/2)e" ', '

the eigenfunction with energy —~8 ~. This can also be
seen more simply be noting that as 8, & 8', p', H
—Handy g.

For the above considerations to hold the residual ener-

gy gap must be small enough. The following criteria
determine how small. We assume the following:

(1) The true energies are well approximated by a
linear time dependence from tp to a time t, (0 before
the avoided crossing, and from a time tb —

~ t, ~
until tf

after the avoided crossing; thus, if 8& is the actual mini-
mum energy gap, we must have Bp

~
t,

~
/T )&8&, or Bp),,

-Bpkb»8 .
(2) The transition amplitude from tp to t, and tb to tf

must be approximately given by our formula (13); thus,
as t t, from below, or tb from above, dO/d)

+i sinOdp/dX must seem to approach a limit of order
unity.

(3) There is violation of the sudden approximation;
~ t, —ts ~ X,Bp must be much smaller than our calculated

transition amplitude, 1/(BpT) '/ .
All of these criteria are met by the following relation

between the three independent small numbers of our
model:

with eigenvalues 8' such that

2gr2 82+E 2 ~ [(82 E 2) 2+4E 28 2] 1/2 (i9)

This level crossing occurs at 8 =E and 8 =Bsint9=0.
With 8 =E, W=+ E[cos(8/2) ~sin(8/2)], where the
two ~ signs are, of course, independent. We would then
choose

k =2 sin(8/2) = 8 (20)

for 0 not too large.
The crossing is avoided if 8=E(I+6) and 8~ Op.

The residual gap, 8&, is given by

BJ =E(B +sin 8 )'

and Bp by

Bp=E. (22)

The conditions (17) become, with O=t/T,

(8 +sin 8 ) «8 « =— «11 1dO
ET E dI;

(23)

'See, for example, L. I. Schiff, Quantum Mechanics
(McGraw-Hill, New York, 1949), pp. 207-210.

2L. D. Landau, Phys. Z. Sowjetunion 2, 46 (1932).
3C. Zener, Proc. Roy. Soc. London A 137, 696 (1932).
4An exact solution of Eq. (8) for B(t) and B(t) both linear

functions of t and p constant has been obtained by M. Berry
(private communication). With a+( —~) =1 and a —( —~)
=0, he obtains

~
a+(~)

~

=e ~ and
~
a —(~)

~

=1 —e
with p given by Eq. (16).

5The following example of a level crossing which will not be
avoided was pointed out to me by R. Silbey. In the system de-
scribed by Eq. (19), two levels go through zero simultaneously
for O=n/2 and any E, B, and p. It turns put for this case that
the coefficient (v —,Bv+/Bk) goes to zero as W goes through
zero. The transition amplitude a —goes like 1/BoT [instead of
1/(BpT) ], with a coefficient which depends on the behavior
of the field configuration for

~
A,

~

—I.

The transition amplitude is then given by Eq. (13)
with fcosOdp =0 and

(v, bv+/aO)
~ s-e. =p= ——,

' .
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