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Aharonov-Bohm Effect and the Mass of the Photon
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We show that the Aharonov-Bohm effect requires that the vector potential couple minimally to
matter, not that it be a gauge field: The elfect is present in massive (finite-range) electrodynamics, re-
ducing smoothly to the original result in the limit of infinite range. Indeed, it may be used to provide an
experimental bound on the range which is much larger than the "table-top" apparatus, namely a lower
limit of order 10 km.
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The vast literature on the Aharonov-Bohm effect (see,
for example, Ref. 1) is explicitly based on the gauge na-
ture of the electromagnetic field. To our knowledge,
there have been no discussions of whether it might exist
for a nongauge field such as finite-range electrodynamics
(in quantum language, for finite photon mass). There is
also a literature on massive electrodynamics (e.g. , Refs.
2 and 3) which likewise does not include any analyses of
the Aharonov-Bohm effect, let alone whether its infinite-
range limit is smooth.

%'e will show that the effect indeed exists for finite
mass, has a smooth limit, and may even be exploited to
provide a bound on the photon's mass: Precision experi-
ments could observe a range as high as 10 km.

The effect. —We formulate the Aharonov-Bohm effect
in the following terms. In the semiclassical limit, the
wave function of a charged particle contains the path-
dependent phase exp(iefA dx), whic. h means that when

a beam is split and recombined, there will be a phase
shift of the form (ft =1 =c)

exp ieII~ A dx =exp(i&) .

is through any surface bounded by the closed curve c
defined by the two paths. Although this phase factor is
usually invoked from gauge invariance of the theory, it is
simply a consequence of minimal (8„~tl„—ieA„) cou-
pling to the vector field A„rather than of the specific ac-
tion for A„. We will stay within the same minimal-
coupling framework here (since Pauli terms are in any
case irrelevant to the effect) so that the currents remain
conserved. Thus, the value of & (mod2tr) will be observ-
able in the interference pattern produced by the recom-
bined beams. The transverse (nonlocal and gauge-
invariant) vector potential A which contributes to & is
uniquely determined by B according to —V A =VxB.
Consequently, if there is a nonvanishing magnetic field
B=—V&&A anywhere in space (even one confined to a
bounded region), its contribution to A = —V VX B is
nonvanishing almost everywhere. Note that the above
discussion is completely independent of the action
governing A„.

We turn next to the equations which determine
(A, B). If the field is of finite range, it obeys the Proca
equation

The Aux B,F"'+m A" =J" (3)

4—=e ~A ds=e JIVXA dS=e Jt B.ds
C

(2) where F„„=B„A,—8„A„, and our met—ric is ( —+++ ).
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For stationary currents and magnetic fields, this means

VxB+rn A=J, (4)

(m ' —V')W, =0. (s)
Since V J=0, this implies vanishing longitudinal vector
(and scalar) potentials. (Physical longitudinal photons,
which are the hallmark of the m~0 theory, are well
known to decouple from matter in the m~ 0 limit, pro-
vided that the current is conserved. If the current is not
conserved, then the coupling to the longitudinal photons
becomes strong as m 0 and only extremely weak cou-
pling is allowed experimentally. ) The relevant equation
is then

( V2+m 2)AT JT .

for the usual solenoidal configuration, it reads

where j is the current per unit length in the surface of an
infinite cylinder of radius a, (p, z) are unit vectors, 0 is
the step function, and p is the radius of the x-y plane.
Writing A =z x VII(p), we obtain the scalar equation

(tlp+p 'rl, —m')II(p) =j0(a —p) . (8)

Consequently, the Green's function is just

6 (p, p') = Ip(mp ( )Kp(mp ) ) (io)

The relevant homogeneous solutions are the Bessel func-
tions IO, KO which are regular at the origin and at in-
finity, respectively:

x 0: Ip(x) I +x /4, Ko ——In(x/2),

x ~: Io —(2zcx) ' e", Ko —(x/2)' e

( —V +m )A =pjb(p —a) =VXjz0(a —p), (7)
and II is given by

r
r a fO p r a

II(p) = —j 0(p —a )Ko(mp) p'dp'Io(mp') + 0(a —p) Ko(mp) p'dp'Io(mp') +Io(mp) p'dp'Ko(mp')

The magnetic field therefore reads

B=VXA=zV II=zj0(a —p)+zm II(p) . (i 2)

The first term on the right-hand side of (12) is, of
course, just Bo, the usual Maxwell field. It is clear from
(11) that m II vanishes in the m 0 limit since Io is
regular and Ko is logarithmic at vanishing argument (for
fixed p).

We have thus established continuity of the Aharonov-
Bohm effect as the range increases (for fixed p, a): The
magnetic field reduces to its Maxwell value 80 in the re-
gion p& a and to 0 outside. What about the correc-
tions? Clearly, since there is now a length m ' in the
problem, there are three possible cases (we assume as
usual that the wave function is excluded from the
solenoid, i.e. , that p) a), depending on whether the
range is shorter than a, between a and p, or greater than
p. The first two possibilities are physically irrelevant
since we know from the absence of an observed Yukawa
decay of the terrestrial magnetic field (let alone astro-
physical considerations) that the range is much larger
than the laboratory scales involved in p. Nevertheless,
we record m H in these two cases:

mp)&1»ma: m II—(rr/8mp)' (ma) e ™,
mp)&ma)&1: m II—(a/p) ' e

We now concentrate on the interesting case of long
range: 1&)mp & ma. There are now corrections to 80
both inside and outside the solenoid:

dB =zm II—z[0(p —a)c+0(a —p)D], 1))mp»ma,
C= —{j/2)(ma) In{mp/2), (i 4)

D—:(j/2)[ ——,
' (ma) + —,

' (mp) —(ma) ln(ma/2)] .

The magnetic field "leakage" C outside the solenoid is an
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extremely small fraction of Bo, namely of order
—,
' (ma) In(mp/2); it represents the closing of the field

lines at finite (—m ) distance. The fractional change
in the internal field is also small, of fractional order
—,
' (mp) . Of course the coupling is through V —ieA and

the Hamiltonian is a function of A rather than 8. Al-
though the local exterior 8 is in any case extremely
small, it is the nonlocal A which carries the interaction
eA'ect and which is not small.

The contributions hN to the flux @ inside the observa-
tion circle p come from both regions. The interior con-
tribution is given by

r a
5&;=2m p'dp'D(p') ——(x/2)ja (ma) ln(ma/2),

(is)

where we have only kept the leading, logarithmic, part.
The leading exterior correction,

We, =2m„p'dp'C(p')
—(x/2) j(ma) [p In(mp/2) —a ln(ma/2)], (16)

is the dominant new effect [5+;—(a/p) 6&,]. Now the
Maxwell flux @o is, of course, +o=fBo.dS =xa j, so
that the fractional correction is

&+/No ———,
' (mp) ln(mp/2) = (mp/2) ln(2/mp)

(i7)

which is essentially quadratic in the small parameter mp.
Note that varying p is equivalent to "varying" m. Equa-
tion (17) is our basic result for the correction to the usu-
al efl'ect due to finite (but large) range.

In the case of a finite apparatus, this result is modified.
The logarithmic dependence upon p remains, but it is
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scaled by some factor of order of the size of the ap-
paratus. In general, the correction must be evaluated
numerica11y; however, for a circular flux line of radius R,
the correction to the flux through a small circle of radius
p((R enclosing the flux line may be written in terms of
elliptic integrals. The approximate result is

6&/&o —(mp/2) [ln(R /p )+O(1)]. (18)
We have seen that the nonlocal effects of a magnetic

field in normal electrodynamics are simply ascribed to
the fact that the physical gauge-invariant transverse vec-

tor potential A is a nonlocal function of 8, and that it is

A which couples to the wave function. These facts are
independent of the dynamics governing the A field, and

persist whatever its range. For the standard solenoid

configuration, finite range does lead to a small B field

leakage outside the solenoid, as seen in (14); for the

physical situation in which 1»mp& ma, the additional

flux is dominated by the contribution from the leakage
field, although the interior field corrections also contrib-

ute. This does not mean that the leakage field is the

cause of the effect here; indeed, one could even arrange
in principle for the leakage flux addition to be an integer,
in which case only the interior field would contribute,

making the picture just as nonlocal as in the massless

case. Thus, the standard "paradoxical" features of the
Aharonov-Bohm effect are reproduced by the massive,

nongauge, field. We also noted that, as might be expect-

ed, the m ~ 0 limit yields the m =0 results.
Experimental bounds on the photon mass. —We now

show that some nontrivial limits on the range of the

transverse photon can be obtained from a table-top ex-

periment. (Experimentally, limits on the electric field

range from electrostatics are a quite different story,
based on deviations from the Gauss law. The best of
these limits based on the longitudinal field is m
~ 3.1x10 km. ) In the typical experiment, the mag-

netic field is constrained to a small "whisker. " If the

whisker consists of a type-II superconductor, then the

flux quantization of the individual vortex lines will assure

that @0 will be an integer multiple of 2x, so that there is

a "null" effect in Maxwell theory. A naive application of
the Ginzburg-Landau theory modified to include finite-

range electrodynamics still yields flux quantization and

we conjecture that a more sophisticated treatment will

yield a fractional change in the shape of the free energy

as a function of B of order (ml), where l is the size of
the Aux vortex (1 ' is the effective London photon
"mass").

To obtain an experimental limit on the range m

one must detect a phase shift which is some fraction e of
2z. Fortunately, since +0 does not contribute when the
"solenoid" is a finite superconducting whisker, this

means that the correction hN gives the whole effect, and

so we must have

h4~ 2ze. (19)
By (17), this means that the value of mp at which the

effect is just observable is

(mp/2) ' =2tre/epA, (2O)

where A depends upon the detailed experimental config-
uration but is of order 1. We consider a whisker of ra-
dius a —0.1 cm, a magnetic field of 10 T, and a resolu-
tion e—10 . This yields, as the longest range which
could be observed,

m '=14p km, (21)
where p is measured in cm. For a coherent beam of
p —10 cm, the observable ranges are then ~10 km.
Naturally there will be uncertainties due to, e.g., stray
fields which vary with the flux in the whisker. Even if we

have been overly optimistic in choosing our parameters,
it is nonetheless interesting that a reasonably large lower
bound on the range of electrodynamics can be obtained
from a precision experiment of small dimensions. An

analogous experiment has already been performed by To-
nomura. ' However, the geometry and field strengths ob-
tained are not optimal for our purposes.

It should be emphasized that the proposed experiment
probes the deviation of the magnetic field from its classi-
cal value at short distances. No measurements are pro-

posed at a distance scale of m . The precision is ob-
tained only because it is a null experiment for m=0
combined with the use of large magnetic fields and the
sensitivity obtainable by detecting phase shifts.
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