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Theory of Collective Flux Creep
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The nature of flux-creep phenomena in the case of collective pinning by weak disorder is discussed.
The Anderson concept of flux bundle is explored and developed. The dependence of the bundle activa-
tion barrier U on current j is studied and is shown to be of power-law type: U(j) ccj '. The values of
exponent a for the different regimes of collective creep are found.

PACS numbers: 74.60.Ge, 74,60.Jg

There are a number of experimental results confirming the existence of a giant thermal flux creep in high-T, super-
conductors. ' lt seems probable that pinning of vortices in these materials is due to weak randomly distributed defects
(e.g., oxygen vacancies). These defects induce elastic distortions of the vortex line lattice, whose free energy F associat-
ed with distortion is

F=„d (C —C ) +C +C +U„;,(, )

Here, the two-dimensional vector u(r) describes a local
displacement of the flux-line lattice; Cii, C44, and C66
are, respectively, bulk, tilt, and shear elasticity modules;
U~;„(u,r) is the random potential describing the lattice
interaction with defects. This random potential is sup-
posed to be short-range correlated:

&Up, „(u,r) Up, „(u',r')) =K(
~
u —u' (, ~

r —r'
~ ),

where K(x,y) decreases rapidly at x,y larger than some
characteristic length r~ (r~=( if the size of defects is
smaller than the coherence length g). The random po-
tential leads to destruction of the long-range order in the
vortex line lattice. It has been shown in the theory of
collective pinning ' that the critical current density j, is
determined by the pinning lengths R, and L, as j,
=(p'/V, )' 2B '=C66(/R, B, where W' is the mean-

square value of random force produced by defects:
Vtt C

~ ~
g'/R

~~

—Vtt C66('/R ~ —Vtt C44('/L ' —j,Vtt Bg,

where Vtt=R~~~R&L is the bundle volume and j,VttB( is
an estimate of the energy gain due to hopping under the
action of Lorentz force. Therefore R & —R„R~~

—L
—L, —R(C» /C«)', and the energy barrier U, —C66
x((/R, ) R,L, —C66t Cip( /W: This value is by the
factor (C»/C66) 'l larger than the energy of elastic dis-
tortions in the pinning volume V, =R, L,. This is due to
the fact that the flux bundle is made up of a large num-
ber [—(C~~/C66)'t ] of subbundles of the volume V„
these subbundles being formed independently from each
other by competition betwen shear (and tilt) elastic ener-
gies and disorder potential. These subbundles hop all to-
gether as one bundle because the large value of Cii
» C66 prohibits independent hopping of subbundles.
The energy barrier U, for such correlated hop is roughly
the sum of energy barriers of the subbundles [which are
of the order of C (6g6R/, ) R, L,].

So far we have considered the case j—j,. However, it
is also quite natural to explore the region j((j„where
the bundle volume Vtt(j) proves to be even larger than
the above estimate for Vg. In conventional superconduc-
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W =
l [r) K(u, r)/Bu l, —g d r .

Here, we define a pinning volume V, =R, L as a volume

of the lattice region where the elastic distortions of the
lattice

~
u(r)

~

~ (. Longitudinal (L, ) and transverse

(R, ) (with respect to the magnetic field B direction)
sizes of this region are L, =R, (C44/C66), R, =C44i/2 i/2

x C3t'g'/IV
At low currents j(j, the vortex lattice is in some

metastable state. Transitions between different metasta-
ble states are due to thermal activation through free-

energy barriers whose characteristic scale is U(j). If
j j„then U(j) 0. Our main goal is to obtain the

U(j) dependence.
In the case of collective pinning U(j) is of the order of

elastic energy of the hopping llux bundle (introduced by
Anderson ). We start from the simplest case B—H, ~

(where C~~ —C44 —C66 —C) and consider the current
density j—j,. In this case the volume of the bundle is of
the order of V„while the hopping distance uh, ~

—g, so
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!
the activation energy is U, —C(g/R, ) V, =C g"/IV.

If H»H, i, Cii =C44»C66, then R„L„andj, are
determined by shear and tilt deformations and are in-

dependent of Cii. Nevertheless, shifting of a large re-
gion of the lattice by distance uh, ~

—g induces consider-
able compression deformation. The energies of shear
and compression deformations should be of the same or-
der of magnitude. For the bundle with the sizes L, R~~,

and R~ (along the magnetic field, in the direction of
hopping, and in the transverse direction, respectively)
compression, shear, and tilt deformations are ~divu

~—g/Rii, ) (V&u) (

—g/R~, ( Bu/Bz )
—g/L. since Cii

» C66, then R(( should be much larger than R&. Consid-
ering the energy of these deformations one obtains



VOLUME 63, NUMBER 20 PHYSICAL REVIEW LETTERS 13 NOVEMBER 1989

tors the activation energy is large, the temperature is
low, and the creep is weak, so the creep measurements
are performed in the region of current j, —j« j,. How-
ever, in high-T, superconductors the creep rate is much
larger and usually one measures currents which are con-
siderably lower than j,. When a magnetic field B & H, &

is applied to a sample of superconductor, the Bean's crit-
ical state is formed at short time scales to. Then, after
a time t,b, current density decreases due to Aux creep
down to some value j(t,b, ) which is determined by the
following relation:

U(j(t,b, ) ) = T ln(t, bJto), (2)

where T is the temperature and in(t, bJto) is usually of
the order 10-30. It is usually assumed in the theory of
flux creep that j, —j«j, and that in this case U(j)
=U, (l —j/j, ) which leads immediately to the well-
known result j(t) =j, [1 —(T/U, )ln(t/to)]. Kes et al. '

have supposed that at j«j, the energy barrier U(j)
tends to some constant Uo —U, and have developed the
theory of thermally activated flux flow (TAFF) where
the Aux relaxation is governed by the conventional linear
difl'usion equation with difl'usion constant D cx: exp( —U, /
T). Below we shall show that in the case of elastic de-
formations of the flux-line lattice the energy U(j) grows
at j«j, as j,which means the absence of usual linear
diffusion (D 0 at j~ 0).

The origin of this unusual behavior can be understood
as follows. "' In the absence of an external current the
lattice is in some local most favorable metastable state.
Under the action of the external current j some other
metastable states become more preferable. These states
are determined by the condition that the energy gain due
to the external Lorentz force is of the order of the elastic
and' pinning energies. At j—j, this condition is fulfilled
for neighboring states which diff'er by a bundle shift by
the distance uh, ~(j, )—g. At j&&j, the hopping distance
uh, ~(j) should be much larger and is determined by the
following estimate:

j»)...(j)-C66uhop(j)IR~ (J),

where R~(j) is the size of the bundle in the direction of
the vector [Bxuh, ~l.

To find the uh, ~(j) dependence one needs some addi-
tional relation between uh, ~(j) and R~(j). We shall
show below that in most favorable metastable states of
elastic media interacting with the random potential, Auc-
tuations of the displacement field u at the distance R in-
crease as

Eq. (3) leads to the following estimates:

( .) ~ . —t'/( —t') R ( .) ~ —/( —(')

R~(=L=(C»/C66) '"R~, U(j) cr J
where a=(d —2+2/)/(2 —g), d is the dimsionality of
elastic lattice.

Now we turn to the determination of the exponent g.
An analogous problem has been solved exactly"' for
the case of a one-dimensional elastic line in two-dimen-
sional random media, with the result g= —,'. This is a
particular example of a general problem of d-dimen-
sional elastic media whose position in the random poten™
tial is characterized by an n-dimensional vector u(r).
We shall denote the exponent g for this problem as gd „.
The behavior of the three-dimensional Aux-line lattice is
described then by an exponent f32. The value of g) 2

(elastic line in three-dimensional media) was numerical-
ly found in the interval 0.6-0.65. ' ' Now we show how
to relate values of gd „with the same n, but different d.
We suppose that the random potential is a short-range
correlated potential with the characteristic length g. As
above we define V, =R," as a volume of region where
elastic distortion of the media IuI Sg. Equating once
more elastic energy and the energy of the interaction
with defects, we obtalB C{g /RP) V~ —{V~W) g (here
C and 8' are the elasticity modules of the media and the
mean-squared value of the random force). Thus, finally
R, = (C g /W) '/ and the energy is U, =W'/

xg(C g /W) . Fluctuation of the energy in a
volume V) V, is of order AE, )

—C(u / R ) V. We pro-
pose that the wandering exponent g(u cx:R~) is deter-
mined from the equality between Auctuation of the elas-
tic energy AF. ,~ and Auctuation of the random potential
energy (pinning energy) /3. F~;„.Now we face the prob-
lem of estimating Auctuations of the random potential
energy. The key point of our analysis is the suggestion
that AF~;„is independent of elastic module but does de-
pend only on the fluctuating volume (V) involved, its dis-
placement (u), and quantities W and ( which character-
ize the random potential. Then writing down the expres-
sion for Auctuation of the energy AEp;„ in the form
~(,;,=U, (V/V, ) (u/g) ~ and making use of the in-
dependence of AEp;„on C we find straightforwardly the
value of exponent 6' and express P in terms of wandering
exponent g [note that 8 and p may depend on dimen-
sionality n of displacement vector u(r)].

Namely, since U, ~C"'" ' and V, ~C '" "' we
find that the exponent 6'=

2 and the Auctuation of the
pinning energy is

u(R) =& Iu(r) —u(r+R) I
'&'"~R', (4) /). Fp„-(WV) ' 'g(g/u ) ~(") '. (6)

where the positive exponent g will be found below. The
same estimate (4) also describes the relation between the
amplitude of hopping distance uh, z(j) and the size of the
respective bundle R~(j). Substitution of Eq. (4) into
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From the condition &F~;,—~,~ we get gd „=(4 —d)/
[4+p(n)] For inst.ance, if g) 2=0.6 (the vortex in the
three-dimensional space), then the exponent for the case
of the vortex lattice is f32 g g(2' 5. One can inter-
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gd „=2(4—d)/(8+n) . (7)

which is in accordance with our qualitative considera-
tions.

Now let us return to the case of flux-line lattice in su-
perconductors. The flux-line lattice is a rather complex
object because it is characterized by diA'erent lengths:
the vortex core length g (which characterizes the vortex
interaction with small defects), the lattice constant
a=—(po/B) '~, and the London penetration depth A, (a
and X characterize elastic properties of the lattice). The
elasticity modules C44 and C ~ ~ have strong spatial
dispersion on wave vectors K & I/X. ' If K & 1/a, then
C)( =C44=B'/4n(X~K +1), 'C66=&OB/(8+k) . When
K is of order of I/a all modules C~~, C44, and C66 have
the same order of magnitude. Depending upon the mag-
netic field and temperature range several qualitatively
diAerent types of collective pinning and creep are possi-

pret Eq. (6) as follows. The factor MV describes the
usual square-root dependence of the fluctuations of the
pinning energy in the volume V on the number of pin-
ning centers in this volume. If the lattice cannot wander
(the absolutely rigid lattice), then AE~;„—(WV) '~ g. If
permitted to wander, the lattice adjusts itself to the ran~
dom potential, so fluctuations of &F~;„decrease by a fac-
tor f„=(g/u) P~. The factor f„is associated with the
number of metastable states which lattice encounters
when shifting over u. The number of metastable states is
in turn determined by the volume V„~u"spanned by
the displacement vectors u. So it seems plausible that
f, f~, P(n) =P(I)n M.aking use of the exact result

P&, i
=

3 ~P(I ) = &, "' we conclude immediately that
P(n) =n/2 The . same result has been found by Halpin-
Healy ' by means of functional nonlinear renormal-
ization-group analysis. Based on the results of Ref. 17,
Natterman has obtained the wandering exponent in the
form

U,
T ln(r/r 0)

7

(9)

When j j&, then the characteristic size of the hopping
vortex L~a and for this length the interaction of vor-
tices (elasticity modula of the Ilux-line lattice) aA'ects

the wandering and the activation barrier in the creep. In
this region fluctuation of the displacement can be written
in the following form:

u ={
~
u(r) —u(r+R)

~

)' '=g' '~"uP" =g'~'u'J

where uLo is Larkin-Ovchinnikov formula which is valid
for u &(:

ble. We concentrate our attention on one of them which,
as it seems to us, is realized in high-T, superconductors
at relatively low temperature. In these superconductors
the critical current density j, is independent of magnetic
field at low temperatures. In terms of the collective pin-
ning theory it means that R, is smaller than the lattice
constant a therefore the critical current is determined by
the collective pinning of single vortices. So the pinning is
characterized by one length L, which can be easily
found: L, =+[pop /(2x) a IVII. ] '~ (W is proportional
to B therefore L, does not depend on magnetic field).
Our case of collective pinning of single vortex corre-
sponds to a region g &L, &a. In this region the esti-
mates of the critical current density j, and characteristic
energy U, yield, j,—j o(g/L, ), U, —H, g (g/L, ),j 0 is a
depairing current jo—H, /k.

In the region of the current

J~ & J & Jl Jc(Lc/&) ' =Jc(Lc/&)

the bundle is in fact a segment of vortex line of length
L, & L & a, and d =1 in Eqs. (5) and (7), so we obtain
the energy of the creep of vortex lines (see also Ref. 12):

U(J) =U, (J,/J) " "=U, (J,/J)'". (8)

Inserting this energy into Eq. (2) we obtain

uLo(R, L)=(
Lc

(R +a L /X )' R +a L+ln 1+
a

-
&/2

U(j) —C66 2 R ~ (j)R ~~ (j)L(j)—U&
u'(j). . . ji

R~2 (j) j (10)

From Eq. (2) we obtain
2/3

(In the original paper there was a mistake in the last term of this formula, which was corrected in Refs. 19 and 20.)
In the region j& &j& j2=j&(a/X) the creep is determined by the hopping of a small bundle with a transverse size
R& & X. This is the region of strong spatial dispersion of elasticitiy modules, where L(j) and R~~(j) scale as R&(j), and
/=0 [cf. Eq. (5) which is valid in the local limit R &)&X]. Neglecting logarithmic factors we obtain

3/2 &/5

T ln(r/ro)

when the current j & j2, then the transverse size Rj & X; therefore there is no dispersion of elasticity modules and we
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U(j) -Uz J2

, J
=Up

obtain a result analogous to Eq. (5):
(~$3,2+ i )/(~ g3, 2 i 3

Ug
U& —-Ui —,j(t) =j~a ' T ln(t/tp)

We believe that Eqs. (9), (11), and (12) which demon-
strate rapid decrease of j(t) with temperature T and
time fas [Tln(t/tp)] 'I may provide the explanation of
the results of the magnetic measurements of the critical
currents where the fast drop ofj (t, T) with T increasing
and large relaxation was found.

The recent decoration experiments ' ' have demon-
strated that even in superconductors with comparatively
high values of critical current (i.e., in superconductors
with considerable disorder) one can observe well-
pronounced flux lattice until rather large distances. Pos-
sible explanation of this fact is as follows. The correla-
tion radius of the destruction of long-range order by the
random potential is defined by the relation

R(a) —k(L, /g) (a/g) " =) (L,/g) (a/g)

and one sees that R(a)))). So even for high magni-
tudes of critical current (if L, —g, then j—jp) the long-
range order is destroyed on very large distances.

The main result of our paper is that creep activation
energy depends strongly on the current at j((j,. Note
that there exists a direct way to measure this depen-
dence. Namely, one should measure magnetic relaxation
at diferent values of current but the same values of
magnetic field and temperature. Diff'erent small currents
may be obtained by heating the sample up to the temper-
ature where the relaxation is strong and the current rap-
idly decreases and subsequent cooling down to the mea-
surement temperature.

For the sake of simplicity we do not consider the eff'ect
of anisotropy of superconducting properties and temper-
ature dependence of the parameter W' (see Refs. 4, 5,
and 12). The detailed results of this study will be pub-
lished elsewhere.

At high temperature the current rapidly decreases
during the experiment and as follows from the result ob-
tained, the activation energy of creep becomes very high.
So another mechanism of creep (for instance, the plastic
hopping of the extended defects of flux-line lattice, e.g. ,
dislocation) becomes essential. The activation energy of
such processes appears to depend weakly upon current
but can be considerably higher than the energy of collec-
tive Aux creep at low temperature and large current.
Our results, which will be presented elsewhere, show that
the results of resistive measurements could be plausibly
explained by taking into consideration the process of
motion of dislocations in the flux-line lattice.
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