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Statistics and Flux in Two Dimensions
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We have investigated the interplay of fractional statistics and magnetic field for anyons on a lattice,
by exact calculation of ground-state energies and wave functions for small systems. We find that the two
types of "flux" (magnetic and statistical) are to some extent interchangeable in determining the
ground-state properties, and thus that mean-field theories, which replace statistical phase shifts by mag-
netic fields, may be an appropriate method for treating fractional statistics.

PACS numbers: 74.65+n, 05.30—d, 67.90.+z, 73.40.—c

There is currently considerable interest in the proper-
ties of objects with fractional statistics (anyons). Identi-
cal anyons give a phase upon exchange which is neither
+1 (Bose) nor —1 (Fermi), but rather a complex phase;
such objects can only be defined consistently in two di-
mensions. ' The name "anyon" was coined by Wilczek,
who proposed a model for the anyon as a bound compos-
ite of a flux tube and a charged particle. There is consid-
erable theoretical evidence ' that the quasiparticles
(vortices) in the fractional quantum Hall eA'ect may be
characterized by fractional statistics. Recently, Kal-
meyer and Laughlin and others have suggested that
the quasiparticles of frustrated two-dimensional magnets
also have fractional statistics, and further that half-
statistics objects (semions ) can pair to form a superfiuid
state, which may in fact be important for understanding
the high-temperature superconductors. ' '

Calculations with anyons are difticult since their wave
functions are neither symmetric nor antisymmetric. '

They may, however, be viewed as ordinary fermions (or
hard-core bosons) with an attached fiux tube, giving a
modified Hamiltonian with a long-ranged interaction
which yields the appropriate phase change upon ex-
change. In this picture one can imagine a mean-field
theory of anyons ' ' ' in which one particle moves in the
smeared-out, average flux field of the other, i.e., in a uni-
form magnetic field. ' We have calculated numerically
the exact ground-state properties of small systems of
anyons [including fermions and hard-core (HC) bosons]
on a lattice, in a uniform magnetic field. Our aim has
been to test the applicability of the mean-field theory
(MFT) of anyons, by examining the interplay of statis-
tics (attached flux) and magnetic field ("detached statis-
tics") in two dimensions. We view our anyons as
charged, HC bosons with attached flux tubes. The
strength of the fiux tube (the statistics) is given by the
parameter a„where the phase due to exchange is

0, =ma, . The magnetic field is given by a f, the number
of flux quanta per plaquette. Our Hamiltonian may thus

be written as

H = —t g[c;tc, exp(p;, ) +H.c.],
(Ig)

where p;~. is the phase due to other anyons, and to the
magnetic field, arising from the hop ij. We take t =1.
Since wave-function overlaps (see below) are gauge
dependent, we have applied the same gauge choice to
both the flux attached to the anyons, and the plaquette
flux. We have examined rectangular lattices with
periodic boundary conditions in one (x) direction. We
have block diagonalized 0, finding the lowest-energy
state for each wave vector k„, using a modified Lanczos
technique. '

To the extent that MFT is correct, the properties of a
system of anyons depend only on a weighted sum of the
"statistical" flux and the background flux, given by

a, =a, + amt/n, k,

where n, is the lattice filling and X is a finite-size
correction —the ratio of lattice sites to plaquettes. We
have taken X, =1.

Figure 1 shows the ground-state (GS) energies as a
function of a, for various combinations of a, and a f.
The lattice is "3X4/6" in our notation, which means 3
rows (y direction) and 4 columns (x direction), with 6
particles (n, = —,

' ). We see that the GS energies are, to a
good approximation (—5%), a function only of a, ; i.e.,
that MFT is not a bad predictor of the GS energy. We
have plotted similar data for three other lattices: 3X 4/8,
4X4/6, and 4X4/8. We find that the good fit seen in

Fig. 1 becomes less good as we deviate from half filling;
i.e., the spread in GS energies is about 10%, 13%, and
6%, respectively, for these three cases (the last being
again half-filled).

One can also test whether the exact GS of an anyon
system has a significant overlap with the GS of the corre-
sponding MFT state in a Bose or Fermi representation.
Let

~
a„a t) be the GS for a system with the indicated
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FIG. 1. Ground-state energies on the 3 x 4/6 lattice vs
"effective statistics" a, (see text) for various combinations

i a„a ri (a few are marked). Each curve is a sweep of real
statistics a, at a diAerent magnetic field; mean-field theory pre-
dicts that the curves should coincide. (The overall figure would
be perfectly periodic in a, if the individual curves were each
plotted over the full range of the figure. )

parameters. Then a MFT of anyons predicts that
i (a„O i 1,a r) i (or i (a„O i 0, a r) i in the Bose represen-

tation) should be large just where a, of the MFT ket is
equal to a, of the anyon bra. As a test case, consider,
for the 3&&4/6 system, i & —,', Oi l, a r) i

—=M (Fig. 2). Ac-
Icording to MFT, M should be large when a q= —4,

4, . . . . We find in fact that, as we vary a q between 0
= 3and 1, M(a r) is sharply peaked around a r= 4, with

M( —,
' ) =0.904. If we choose to represent the semions
0) via the Bose MFT i O, a r), we again find that the2 & s m

14resulting overlap M' is strongly peaked, with
M'( —,

' ) =0.869.
The good match of the fermion MFT to real semions„

as shown in Fig. 2, can be generalized to various frac-
tional statistics, in both the Bose and Fermi representa-
tions. In Fig. 3 we plot M=

i &a„Oi O, amr) i as a func-
tion of a, and a r, for the 4X4/8 lattice. Figure 3 is a
contour plot, showing high peaks in M surrounded by
steep "cliA's" (the dark regions of closely spaced contour
lines). From MFT we expect a ridge of good overlap
where a, as for the vertical axis equals a, for the hor-
izontal axis; and, based on Eq. (1), the ridge should ex-
tend from the origin along a line of slope n, . These ex-
pectations are in fact borne out in Fig. 3. One can dis-
tinguish five peaks in M(a„a r), corresponding to the
following wave functions having good overlap: (i)
M(0, 0), which is trivially 1 at the origin —but note the
large size of the "plateau" around this state —only 25%
of it is shown; (ii) M( —,', —,

' ), as for 3 x 4/6; (iii)
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FIG. 3. Contour plot of M(a»amr) =1&as~OIO, amf) I for the

4X4/8 system. The horizontal axis is the statistics parameter
a„vertical axis is the magnetic field a q for the Bose GS wave
function. Spacing of contour lines is 0.05; areas where M —0
or 1 are marked. Peaks where there is good overlap between
the anyon bra and the Bose (MFT) ket lie on a ridge of slope
no = —,

' extending from the origin (where there is a broad pla-
I 3teau). There is also another peak at M( —, , 4 ); see text.

M( &, & ), where the Bose representation gives a good
MFT of —, statistics; (iv) M( —,', s ), which is weak; (v)
M( —,',

& ), a point which is not on the ridge, correspond-
ing to a, =

2 in the Bose wave function. At these peaks
[except at (i), where M —Il M takes values in the range
0.5-0.7; in the "troughs" M (10 . We note that the
bosons are not good at representing fermions. This is
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reflected in the small overlap at the right end of the ridge
in Fig. 3, and in the structure in Eos(a, ) around a, =1
in Fig. 1. It seems that the

~ 1,0) state is in some sense
"repulsive" in parameter space, while the boson states

~ O, l) (see below) are attractive, as evidenced by the size
of the plateau.

We have constructed a similar plot of M for the Fermi
MFT of anyons, and the Bose and Fermi plots for the
3X4/6, 3X4/8, and 4X4/6 systems. We find that the
Fermi analog of Fig. 3 (i.e., ~&a„O~ l, a~r) ~

) is very
similar, with the ridge appropriately displaced; however,
there are fewer separately resolved plateaus, namely,
Bose (which is large —see below), semions, perhaps
statistics, and of course, fermions. For the smaller lat-
tice the ridge becomes even more obviously a sequence of
rather large, rectangular plateaus (like that at the origin
in Fig. 3), indicating that the smaller lattice has a more
limited power to "resolve" different statistics. We note
that the degree of GS overlap with MFT is not degraded
by deviation from half filling, as is the energy matching.

It is implicit in the notion of a MFT of anyons that
magnetic Aux renormalizes statistics in two dimensions.
On our lattices, HC bosons always have (as expected) a
lower GS energy than fermions, for zero magnetic field.
From MFT it is clear, however, that fermions in an ap-
propriate magnetic field can have a, =2, and a corre-
spondingly low, Bose-type GS energy (Fig. 1) and wave
function. To test this last possibility we have calculated
the overlaps between Bose wave functions at a &=0 or 1,
and Fermi GS wave functions at various a g, for all four
systems described above. The results are unambiguous:
The Fermi systems with a, =2 show a large overlap with
the boson GS. If we define v (=n, X/a r) as the ratio of
particles to Aux quanta, then these Fermi systems are
characterized by v =1. In other words, we see the v =1
quantum Hall effect (QHE) identified in our results as
that state in which fermions are renormalized to effective
bosons, by the cancellation of phase shifts due to statis-
tics and magnetic field. This idea is consistent with the
mapping from Fermi to Bose statistics used by Girvin
and MacDonald to characterize the fractional QHE con-
densate, ' and with more recent work by Zhang,
Hansson, and Kivelson' and by Read. ' We note that
we have not calculated transport properties for our v=1
state; nor have we tested for the size of the excitation
gap. We identify this state as the quantum Hall state
based on (i) a strong minimum in the energy versus a r

at v=-1, which we expect to become a cusp in the ther-
modynamic limit; and (ii) the singular-gauge off-
diagonal long-range order, ' which is implied for this
state by the good overlap with the bosonic wave function.

By these same criteria, we can also identify the frac-
tional QHE states, for simple fractions (v= 1/m, with m
an odd integer), as states in which the fermions become
bosons in MFT. These states are, in fact, trivially ob-
tained from the v= 1 state (for n, = —,

' ) by simply adding
an integer number of flux quanta to each plaquette; thus,

as 2I

with n an integer. For fermions, or for fractional-
statistics quasiparticles, this expression defines a com-
mensuration which describes the quantum Hall effect.
In the present of a lattice, however, adding an integer
number of Aux quanta to each plaquette gives an identi-
cal GS energy, and a GS that is the same to within a
gauge transformation. Thus,

~ 0,0) is equivalent to
~ O, l)

for integer l; however, the latter only satisfies Eq. (2) at
half filling. Away from half filling, the two
constraints —Eq. (2) and

a p=n, a, =I, (3)

cannot be satisfied simultaneously. In other words, un-
like the continuum case, there are two possible commen-
surations which may determine the GS: net Aux to parti-
cles [Eq. (2)] or net Ilux to plaquetes [Eq. (3)]. Thus
the unlimited range (in a, ) of good match in Fig. 1 is
naturally more limited for cases in which n, ~ 2, since
then the periodicities of a, (period of 2) and of a r/n,
(period of 1/n, ) do not coincide, and the energy match is
degraded. In the continuum case, only one type of
commensuration —Ilux to particles, Eq. (2)—is mean-
ingful. Hence we view the half-filled case, where the
Aux —plaquette commensuration does not conflict with
that of flux to particles, as being most nearly representa-
tive of the continuum case.

Finally, we comment on finite-size eff'ects. The true
ground state of the anyon gas is expected to be gap-
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our lattice model is too coarse grained to capture the im-
portant differences between v = I/m and v = 1. This
disadvantage becomes an advantage if we wish to simu-
late hierarchical ' QHE states, since we can collapse
all the degrees of freedom of the background fluid into a
uniform "magnetic field" seen by the quasiparticles
(which, being 2x vortices, ".see" electrons as fiux quan-
ta ' ), while treating the quasiparticles (qp) in the frac-
tional statistics representation. ' We then expect
hierarchy states to occur when a, of the qp, as renormal-
ized [Eq. (1)] by the background "field, " is bosonic, or
2n (i.e., p in Haldane's notation, or 2p, +i in Halperin's).
As an example, we have found a deep minimum in the
GS energy of

~ 3,a~r) states, for the 4X4/8 lattice, at
am&= 6 . This corresponds to a qp filling of vqp 5 or,
in terms of electrons per flux quantum, the v =

5

daughter state. We also find that
~
( —,', —,

'
~
0, 1)

~

—0.95.
We have obtained essentially identical results for the
case

~

—
—,', '; ), which corresponds to the quasihole

daughter state v= 7. Thus we see that, for hierarchy
states, there is a commensuration of real Aux to electrons
in the parent fluid, and of vortices to background elec-
trons, such that each species' statistics is effectively bo-
sonic.

We comment on the effect of the lattice. We expect
the GS to be least frustrated for parameters such that
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less "in the thermodynamic limit. Such a state, which
is subject to long-wavelength density fluctuations, is not
as easily modeled by MFT as is an incompressible state.
Our results can be taken to imply that MFT can model
short-range correlations fairly well. The problem of
long-wavelength fluctuations is not well addressed by
finite-size calculations. We note, however, that the ex-
istence of a gapless mode has been derived from pertur-
bation theory, starting with the mean-field state. "
This result, and the present results, give some evidence
that the MFT of statistics can be an appropriate starting
point for theories of anyons.
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