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Local-Polarization Distribution in Deuteron Glasses
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It is shown that quadrupole-perturbed nuclear magnetic resonance provides a powerful technique to
determine the local-polarization distribution and its second moment, the Edwards-Anderson order pa-
rameter in proton and deuteron glasses. The experimentally determined local-polarization distributions
show the characteristic features predicted by a deuteron-glass model with infinitely ranged random-bond
interactions in the presence of quenched random fields. The measurements demonstrate that we deal in
Rbos6(ND4)044D2PO4 with a random-field smearing of a random-bond-type pseudo-spin-glass transition
and not with a random-field-type freezing or a classical random-bond-type spin-glass transition.
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The question on the existence of a phase transition ' in

real spin glasses is still one of the great open problems in

condensed matter physics. This is also true for proton or
deuteron pseudo-spin glasses which are characterized by
the random freezeout ' of the hydrogen ions between
the two possible positions in the 0—H--0 bonds in

mixed solid solutions of hydrogen-bonded ferroelectric
and antiferroelectric crystals. In spite of many investiga-
tions it is still not clear what is the nature of the ob-
served freezeout. Do we have a pseudo-spin-glass transi-
tion of the Ising type' driven by randomly frustrated
competing interactions and occurring at a nonzero tran-
sition temperature Tg, or just a strong random-field-type
single-particle freezing?

The problem which makes experimental studies of spin
glasses as well as proton and deuteron glasses so dificult
is that the Edwards-Anderson order parameter q EA

characterizing the deuteron glass, as well as magnetic
spin glasses, has no macroscopic conjugate field and is
therefore hard to measure directly. Here we show that
quadrupole-perturbed nuclear magnetic resonance
(NMR) allows a direct experimental determination of
the average local-polarization distribution function W(p)
and its second moment, the Edwards-Anderson order pa-
rameter qEA, in proton and deuteron glasses. This is so
as the site-averaged distribution of NMR frequencies is

a direct measure of the average distribution of the local
0—D--0 deuteron polarization. We also present a the-
oretical evaluation of the average distribution of local
polarizations W(p) based on the Ising model with
infinitely ranged random interactions and quenched ran-
dom fields. A comparison of the experimentally deter-
mined local-polarization distribution function W(p) with
the calculated one shows that we indeed find the predict-
ed change of W(p) from a single-peaked form at high
temperatures to a double-peaked form at low tempera-
tures and that the above model is—in spite of its
simplicity —capable of describing the essential features
of the deuteron-glass phase in Rbn 56(ND4)p 44D2PO4

where N is the number of lattice sites, (. ) represents
the thermal average, while [ ]Av denotes the disorder
average, i.e., the simultaneous average over random
bonds and random fields.

The average probability distribution of the local polar-
ization p is defined as

W(p) =—+8(p —(S;))=[8(p —(S;.))]p,v.1
(2)

Equation (2) implies that W(p) is self-averaging; i.e.,
the two types of averaging in expression (2) are fully
equivalent.

It is trivial to verify that the first moment of the distri-
bution W(p) is the total polarization P, which is zero in
the absence of a homogeneous external electric field,
while its second moment is just the proton-glass order
parameter

tIE+ J lapp W(p) . (3)
The relation between the Larmor frequency of a

deuteron positioned at the ith hydrogen bond in a mixed

(DRADP). Our results also demonstrate that we deal in

Rbn s6(ND4)o 44D2PO4 with a random-field smearing of
the deuteron-glass transition and not with a simple
random-field-type single-particle freezing or a classical
random-bond-type spin-glass transition.

The solid solution Rb~-„(ND4)„D2PO4 of ferroelec-
tric RbD2P04 and antiferroelectric ND4D2P04 repre-
sents a randomly frustrated H-bonded system with
competing ferroelectric and antiferroelectric interactions.
For 0.22~ x ~0.8 the system forms, at low tempera-
tures, a "deuteron" glass. The 0—D--0 bond represents
a two position reorientable dipole which can be de-
scribed by an Ising pseudospin, 5'= ~ 1. The Ed-
wards-Anderson order parameter is here defined in anal-

ogy to magnetic spin glasses as

tI EA g(S' ) ' = [(S;)']Av,
1
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DRADP crystal and the pseudo-spin polarization (S;) of
this bond can be in the simplest case written as

v; =vp+ vi&S;& (4)

as long as we are in the fast-motion limit.
If the local polarization p; =(S;) is nonzero due to the

presence of random fields or random-bond interactions
leading to a glass ordering and making the 0—D--0 po-
tential asymmetric, quadrupolar nuclei like 0—D--0
deuterons with different p; will have different NMR and
nuclear quadrupole resonance (NQR) frequencies. This
will result in an inhomogeneous broadening of the NMR
or NQR lines.

The inhomogeneous deuteron NMR line shape is
characterized here by the average frequency distribution
function

f(v) =—gb(v —v;) = [b(v —v;)]Av,
1 (5)

[(Sj)(Sk)]AV 6jk [(Sj) ]AV ~jkgEA ~ (io)

where self-averaging has again been assumed.
Comparing Eqs. (2) and (5) we find

W(p) = v~ f(v), v = vp+ vip .

Thus, an experimental determination of f(v) immediate-
ly yields the probability distribution of local polariza-
tions W(p). In particular, the second moment of f(v) is
directly proportional to the Edwards-Anderson glass or-
der parameter, i.e.,

dvf(v)(v vp) =vilgEA. — (7)

The above considerations can be easily extended to the
case where the relation between the 0—D--0 deuteron
Larmor frequency and the pseudo-spin polarization of
this bond contains linear and quadratic terms. If quad-
ratic terms are present, f(v) =W(p) ~ dv/dp

~

' be-
comes asymmetric and it is the first moment of f(v)
which is proportional to qEA.

The situation is somewhat different if the nuclear spin
is located at a position i other than the pseudo-spin site
in the 0—D--0 bond. This, for instance, is the case for
the Rb nucleus in Rb~-„(ND4)„D2P04. Here the reso-
nance frequency is linearly perturbed by a group of pseu-
dospins, j=1,2, . . . , r, so that we can generalize expres-
sion (4) to

v; = vp+ gC;J&SJ'& . (8)

The second moment of the distribution function is
now given by

M, =~fdv f(v)(v vo)'=g[C;, C; (S;&(Sg—)]
jk

One may assume that the coefficients C;j are indepen-
dent of the site index i, and thus C;j is not a random
variable. The remaining average is simply

P = ——,
' g J;JS'S' —gf;S' (i2)

Here the random interactions J;J and random fields fj
are assumed to be independently distributed according to
their respective Gaussian probability densities:

P(J; ) J '(2z) ' exp( ——J; /J ),

I'(f;) =(2') ' 'exp( —,' f;/a) . —

In order to perform the average over the disorder in
Eqs. (1) and (2) we apply the replica formalism as
known from the theory of spin glasses. ' For the replica
symmetric phase we obtain the analytic result

W(p) = 1

PJ[2m(q+6)]' '
1 —p

1 arctanh (p)x exp
2 P J (q+g)

(i4)

where P = I/kT, J=JJN, and 6 =6/J, and the value of
the order parameter q=qEA is given by the familiar
self-consistency equation

p=(2~) '
J dzexp( —z /2)tanh [PJ(q+6)' z].

(i 5)
In Fig. 1, the distribution function (14) is plotted for

h, =0.35 and several values of the reduced temperature
T/J. For T(TG=J, W(p) exhibits a two-peak struc-
ture with maxima near p =+ 1. However, W(p) =0 at
p = ~ 1. At T = TG, W(p) ffattens out, and for T) To
becomes a bell-shaped distribution with a maximum at
p 0. With increasing temperature the width of W(p)
decreases, and for extremely high temperatures it
behaves asymptotically as

iim W(p) =S(p), (i6)

which can easily be derived from Eq. (14). Similarly,
one can show that in the absence of random fields, i.e.,
for d, 0, one has q =0 from Eq. (15), and again W(p)

From Eq. (10) it immediately follows that M2=CqE&,
with C QJ - ~ CJ. All above considerations are valid if
the local-dipole-moment fluctuations are fast compared
to the rigid lattice quadrupolar splittings. In the slow-
motion regime we have to take into account the addition-
al broadening due to the slowing down of the Auctuations
via

1(rp)
&

I(rp, p) W(p) dp,

where I(co,p) is the line shape due to exchange7 in an
asymmetric two-site potential and W(p) is the local-
polarization distribution function defined previously.
I(co) reduces to f(v) in the fast-motion limit.

The above considerations are quite general. Let us
now be more specific and let us evaluate W(p) for the Is-
ing pseudo-spin model with infinitely ranged random in-
teractions and quenched random fields:
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FIG. 1. Temperature dependence of the average local-
polarization distribution function W(p) for 5 =0.35 according
to expression (14).

=b(p) for all temperatures T ) To.
The 0—D--0 deuteron and Rb 2

—
2 quad-

rupole-perturbed NMR spectra have been measured for
deuterated RADP single crystals with x =0.44 at an
orientation where the relation between v and p is close to
being linear. The inhomogeneous broadening of the
spectra has been found to be much larger than the homo-
geneous linewidth L(v) measured by the Hahn echo.
L(v) has been found to be Gaussian.

The temperature dependence of the Edwards-Ander-
son order parameter obtained from the second moment
of the Rb 2

—
2 line shapes —after subtracting the

Rbp 56(NDl, jpl, l, D2 PO

0- D. . O deut.
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Exper iment
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T =140 K 3K

contribution due to the homogeneous linewidth —is
shown in Fig. 2. The data cannot be fitted by a pure
glass-transition model (J ~0, 5 =0) nor by a pure
random-field model (J =0, 6~0) for any value of
J or 5,. A reasonable fit can, however, be obtained for
J WO and A~O. This seems to show a random-field
smearing of the Ising pseudo-spin-glass transition in

Rbi —„(ND4)„Dzp04 as predicted.
It should be noted that all of the above results have

been obtained in the fast-motion regime as demonstrated
by Rb and deuteron spin-lattice relaxation time data.

To see if the local-polarization distribution function
can be extracted from the NMR data we studied the
0—D--0 deuteron line shapes as a function of tempera-
ture (Fig. 3). We selected such an orientation so that
the ND4 deuteron line was well separated from the
0—D--0 deuteron line. The experimental deuteron line
shapes —and W(p) —indeed show the predicted change
from a single-peaked structure at high temperatures to a
double-peaked structure at low temperatures (Fig. 3).
Figure 4 shows the theoretical line shapes for the same
set of temperatures as the measured spectra (Fig. 3).
The theoretical line shapes are evaluated without any
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FIG. 2. Temperature dependence of the Edwards-Anderson
order parameter q EA as determined from the second moment of
the "Rb —,

' —
—,
' NMR spectra in Rbo.s6(ND4)o. 44D2PO4.

The dotted line represents the calculated temperature depen-
dence for 5 0.35, TG J 90 K whereas the dashed line rep-
resents the best fit for the pure random-field model Tg =0,
vA 68 K and the solid line the curve for the pure random-
bond model with TG 151 K and h. 0.

50 kHz

FIG. 3. Temperature dependence of the 0—D--0 deuteron
NMR line shapes for x =0.44 and a&BO, + b, B0=45 show-
ing the predicted change from a single-peaked f(v)—and
W(p) —to a double-peaked f(v) and W(p). At this orienta-
tion the relation between v and p is v —vo=vlp+ v2p with
vl -5.2 kHz and v2=3. 3 kHz resulting in an asymmetric line
shape. The relation between v and p is nonlinear due to the ex-
pansion of the H bond on deuteron ordering.
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separating the high-temperature ergodic pseudo-spin-
glass phase characterized by a single order parameter
q =q EA from the nonergodic low-temperature phase
characterized by an order parameter function q(x) with
0 ~ x ~ 1. Further dynamic investigations are needed to
check on this point.

It should be stressed that the technique described in
this Letter is quite general and not at all restricted to
proton glasses. An analogous relation between the
local-magnetization distribution function, the NMR-
NQR frequency distribution function, and the Edwards-
Anderson order parameter can be also derived for mag-
netic spin glasses though in that case magnetic resonance
experiments are more difficult' in view of the effect of
the magnetic field on the spin-glass transition.

This work was supported in part by the Slovene
Research Community and the Swiss National Science
Foundation.

FIG. 4. Theoretical 0—D--0 deuteron line shapes for the
same set of temperatures as the measured spectra in Fig. 3.
The line shapes were evaluated using the parameters h, =0.35
and J 90 K obtained from the Rb second moment data
(Fig. 2). The spectra below 50 K have been corrected for dy-

namic eff'ects using Eq. (11) and the correlation times from

Ref. 2.

free parameters using the J and 6, values obtained from
the 7Rb second-moment data (Fig. 2). The dynamic
corrections are negligible above 45 K. Below this tem-
perature dynamic effects are taken into account by con-
voluting S'(p) with the chemical exchange line shape
I(co,p) according to Eq. (11). The correlation time was
obtained from the rubidium and deuteron Ti data so
that there are again no free parameters in the fit. It
should be noted that due to the rather high value of the
Edwards-Anderson order parameter qEA at the crossover
between the fast- and the slow-motion regimes the line

shape I(co) and the extracted W(p) are much less
affected by dynamic effects than the second moment.

The deuteron as well as the Rb quadrupole-perturbed
NMR data thus clearly demonstrate that we deal in

Rbo 5s(ND4)o 44D2PO4 with a random-field smearing of a
random-bond-type psuedo-spin-glass transition and not
with a random-field-type freezing or a classical random-
bond-type spin-glass transition. It should be noted that
in this model an Almeida-Thouless-type line Tt(h) ex-
ists in the temperature-random-field variance plane
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