
VOLUME 63, NUMBER 3 PHYSICAL REVIEW LETTERS 17 JUL+ 1989

Phenomenological Gravitational Constraints on Strings and Higher-Dimensional Theories
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We investigate measurable gravitational and cosmological effects in four dimensions that can arise
from the compactification of higher-dimensional theories incorporating gravity. We identify the nature
of effects due to massless scalar components of the compactified higher-dimensional metric and due to
modifications of cosmological dynamics. Current experimental data impose constraints on the viability
of many higher-dimensional theories, including Kaluza-Klein, supergravity, and string theories. The
phenomenological problems can be avoided if the components of the metric in the higher dimensions ac-
quire an effective mass. We survey some possible mechanisms for mass generation.

PACS numbers: 04.50.+h, 11.10.Kk, 11.17.+y, 98.80.—k

During the past decade, the classical experimental
constraints on gravitation theories have been significantly
refined. The precise determination of the Eddington-
Robertson parameters' P and y is particularly notewor-
thy. These parameters arise in the expansion

ds —[1 —2MGqr '+2P(MGqr ') + . . ]dt

+(1+2yMGJvr '+ )(dr +r dQ )

of the metric generated by a static, spherically sym-
metric body of mass M. Their current experimental
values are P = 1.003 ~0.005 (Ref. 2) and y = 1.000
~0.002. ' The values of cosmological parameters have
also been improved, yielding the Hubble parameter"
00 =55-85 km s ' Mpc ', the age of the Universe
to=(1.5-1.9)X10' yr, and an upper bound on the
variation with time of the Newton constant G~,
lG~/Gz I

(6X10 ' yr-'.
In this paper, we consider the constraints placed on

higher-dimensional theories by these experimental data.
The notion that the Universe might have more than four
dimensions has played an essential part in modern ap-
proaches to unification of the fundamental forces includ-
ing gravity, such as Kaluza-klein, supergravity, or string
theory. Compactified higher-dimensional theories can
induce measurable gravitational and cosmological effects
in spacetime. Gravitational effects arise from the long-
range propagation of massless modes of scalar com-
ponents g~&, j,k ~ 4, of the metric associated with the
higher dimensions. These modes are perturbatively
generic in many compactification schemes and represent
massless particles that, like the graviton, cannot be
directly detected at present. In this paper, we investigate
the observational effects of such massless modes and
show that their effects are subtle: They fail to modify
Newtonian gravity but, nonetheless, induce measurable
deviations from perturbative Einstein gravity. We dis-
cuss some possibilities for overcoming the phenomeno-
logical problems they generate. Observable cosmological
effects are of two principal types: changes in cosmologi-

cal parameters induced by the different dynamical evolu-
tion of the macroscopic scale parameter, and variations
in the Newtonian gravitational constant induced by the
evolution of the higher dimensions. We show that
present measurements are sufficiently precise to exclude
many models.

Consider a generic theory in D dimensions incorporat-
ing the Einstein-Hilbert action. The Lagrangian of the
theory, assumed to have O(D —1, 1) invariance, has the
form

XD = (16rrGd ) '4 —gR+ X~~+ L (2)

where L~a contains higher powers of R. In a string
theory, Eq. (2) might represent an effective Lagrangian;
then, for example, the part of X~~ involving quadratic
terms in R forms the Gauss-Bonnet combination while
the terms in L „. tt„containing the massless vector A„
form the Born-Infeld action.

Since we observe only four macroscopic dimensions,
the D-dimensional Lorentz symmetry must be broken.
For the moment, assume that this occurs via some mech-
anism leaving the extra n =D —4 dimensions
compactified and small, with volume V„.

Given a localized matter distribution of total mass M,
we wish to examine the behavior of the effective four-
dimensional gravitational potential in the perturbative
regime at large radial distance r. The leading large-r be-
havior is affected neither by the higher-R terms nor by
the detailed nature of the mass distribution. We there-
fore approximate the matter distribution by a 6-function
distribution at the origin.

It can be shown' that the resulting gravitational po-
tential falls as r ' for large r, independently of D.
Whether the mass distribution is pointlike or extended in
the extra dimensions, the long-range dependence on r of
the gravitational potential is that of Newtonian gravity
and is compatible with experiment.

However, Einsteinian gravity involves measurable
corrections to Newtonian gravity. The perturbative solu-
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tion of Eq. (2) yields

4MGg7(n + 1) 4MGD
~oo =

V„(n+2)r ' V„(n+2)r '

where j=l, . . . , D —1 and g„,=g„,+h„,. The experi-
mental definition of MG~ fixes the coefficient of the first
r ' term in Eq. (1) and gives Gz =2(n+1)GD/
[(n+2)V„]. The resulting value for the parameter y in

Eq. (1) is (n+1) . This is compatible with experiment
only for n=0, i.e., D=4.

Thus, the assumptions made lead to the conclusion
that higher dimensions are excluded by established ex-
perimental data. Note that the conclusion arises at the
classical level. As such, it is independent of other
difFiculties with higher dimensions such as natural chiral-
ity generation ' ' and renormalizability or finiteness.

Next, we investigate phenomenological constraints on
the presence of higher dimensions arising from the ob-
served cosmological evolution of the Universe. Consider
cosmologies in a pure D-dimensional Einstein theory that
involve two homogeneous spaces: a four-dimensional one
governed by a scale parameter a(t), and an n-

dimensional one governed by an independent scale pa-
rameter b(t). Approximate the cosmological matter dis-
tribution as a perfect fluid of D-dimensional density

p and pressure p. For the physical situation where b

«a, the stress tensor is given to a good approximation'
by the diagonal D x D matrix with entries

(p,p, p, p, 0, . . . , 0). The Einstein equations then reduce
to a set of three coupled second-order differential equa-
tions for a and b, with coefficients dependent on D.

A striking feature of the D-dimensional theory for
D & 4 is that the evolution of the Universe is governed by
equations that are qualitatively different from the usual

four-dimensional case. With D =5 and a vanishing
cosmological constant, for example, a satisfies the equa-
tion

a a+
a a a

G~
l

3& + k
K Gw o 4 aoHo

(5)

where t1 =8nG~po/3Ho and where k determines the
geometry of the four-dimensional space. For the D
dimensional case we find instead

Contrary to the usual situation, this equation determines
completely the evolution of the scale factor a, indepen-
dently of the four-dimensional density p. Although this
situation is somewhat special to the case D=5 in that b
does not appear in Eq. (4), it remains true that for D & 4
the cosmological equations are qualitatively different
from the four-dimensional case.

Despite the diH'erent behavior one can still find experi-
mentally acceptable solutions for a provided fine tuning
of parameters is allowed. ' This reflects in part our lack
of experimental knowledge of the history of the
Universe. It is possible to find models with b shrinking
and a growing ' and with cosmological properties
matching current experimental constraints. An example
is a model with k = —1 and D =5, for which Hoto= l.

The resulting phenomenological constraints on higher
dimensions are basically of two types. First, the age of
the Universe is too low for certain models, such as the
five-dimensional one with k =+ 1.

Second, the natural dynamical evolution of b means
that G~ varies with time. ' We find its value in the
current epoch for the five-dimensional model is given by

1 Gw 3n ~ 3n(n+2) + 3n(n+2)A
H G~ 0 n —1 (n —1) (n —1)(n+1)

6n k ~ kn—n
(fg —1) a ~H2

(6)

where n & 1 and where k„determines the geometry of
the n-dimensional space. In some models, the variation
of G~ with time exceeds the current experimental upper
limit. For example, the six-dimensional model with

k =k, =0 and 0 =3 is excluded.
It is also worth noting that the existence of higher di-

mensions seems to be a problem for the inflationary
scenario. ' Typically, if a inflates, so does b. For exam-

ple, in the case D =5 with inflation driven by a cosmolog-
ical constant A &0, both a and b are proportional to
exp[(A/6) 'i tj. The extra dimensions would then be of
cosmological size.

The phenomenological difficulties we have discussed
can be avoided if fine tuning is permitted and if large-
distance effects associated with massless scalar modes
from the higher-dimensional components of h„, fail to
arise. One reason for this could be the generation of an
effective mass for these components. Their propagation

!
would then be damped at large distances, so that, for ex-
ample, the observed value of y would be 1.

In particle gauge theories, a mass term at the La-
grangian level for any gauge field is forbidden by gauge
invariance. Instead, gauge-field masses are generated via
the Higgs mechanism. Now, it is possible to view gravity
as analogous to a non-Abelian gauge theory with the
connection and the Lorentz group playing the roles of
the gauge field and the gauge group, respectively. ' It is
therefore natural to investigate whether a gravitational
version of the Higgs effect could generate masses for cer-
tain components of h„,.

This suggestion is particularly pertinent as spontane-
ous Lorentz-symmetry breaking may occur naturally in

string theory. ' String field theory' contains cubic in-

teraction terms of the form ST TM, where S is a gener-
ic Lorentz-scalar field and T is a generic Lorentz-
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tensor field with M representing one or more Lorentz
vector indices. Cubic couplings of this type are absent in

renormalizable particle theories. If any scalars 5 ac-
quire finite expectation values of the appropriate sign
and magnitude, some Lorentz tensors T acquire mass-
squared terms of the ~rong sign. This results in spon-
taneous breaking of the Lorentz symmetry. In the bo-
sonic string, for example, a candidate scalar that may
acquire an appropriate expectation value is the tachyon
field. Its presence signals an instability in the naive per-
turbation vacuum and therefore may even be desirable,
given the phenomenological need to break the
O(3+n, 1 ) Lorentz symmetry and the large gauge
groups often present in strings.

Let us explore the possibility of generating an efI'ective
mass for h„, via spontaneous Lorentz-symmetry break-
ing. We treat a model that mimics the string case. For
simplicity, suppose that the only Lorentz tensor that gets
a wrong-sign squared mass is a vector 2„. An efI'ective
action can be constructed by integrating over all fields
except A„and g„,. Neglecting higher-derivative eAects
and setting the cosmological constant to zero, this action
is described by the Einstein-Maxwell action in D dimen-
sions together with a potential V=V(A„A" —a ) for A„
causing the spontaneous breaking of Lorentz symmetry:

Here, V(x) is taken positive except at x =0, where it
vanishes.

The potential V is minimized when A„has a constant
expectation value satisfying A„g"'A, =a . After shifting
A„by aB„o—~, an analysis reveals that no component of
h„, acquires a mass. There is no version of the Higgs
eff'ect in gravity because the graviton couples to tensor
fields via derivative interactions.

The value of y is aAected despite the absence of a
Higgs mechanism. With A„=a6'„D ~, we find the solu-
tion to the Einstein equations is

4MGD (/ —1)
hoo =

Ir

4MGg
I(k+1)r '

where

4MGo
Ir

1+kr=
1+n+nk ' (10)

where n ~ 1. There is still a phenomenological problem
unless D=5 and k ~. The latter is an unnatural
choice, since a value of a of order of the Planck scale and
hence a value of k of order 1 is to be expected in the con-
text of a quantum theory of gravity such as string theory.

Is there some other mechanism for preventing the

k SttGoa-, l =(1+k) '[(n+2)+(n+1)k] . (9)

This gives

long-range propagation of h„, modes? The analogy with
non-Abelian gauge theories again suggests a possibility.
At large distances, these theories are believed to be
strongly coupled and confining, which leads to bound
states. For example, quantum chromodynamics is a
non-Abelian gauge theory in which perturbatively there
are massless gauge vectors, the gluons, yet long-range
forces are absent. Because of confinement a single gluon
cannot be isolated at macroscopic scales. EAectively, the
mass of a gluon increases as it moves away from a bound
state, which prohibits its long-range propagation.

In a higher-dimensional gravity theory, a mechanism
analogous to confinement involving the extra components
of g„, might avoid the phenomenological difticulties dis-
cussed above. These components must then be strongly
coupled at large distances. Strong coupling is a possibili-
ty here because gravity is a highly nonlinear theory.
Note that string theory, which has higher-R interactions
and an infinite number of particle fields, is even more
nonlinear. Note also in this context that arguments
based on the effective dilaton potential' indicate a need
for strong coupling in string theories.

Given this idea, it is then necessary to understand why
higher-dimensional gravity is strongly coupled while
four-dimensional gravity is not. As the gravitational
force is nondirectional, it is also necessary to understand
why the extra components remain strongly coupled while
the usual metric is perturbative. These asymmetric re-
quirements are difficult to implement in most higher-
dimensional theories.

Theories in which Lorentz-symmetry breaking may
occur naturally could avoid this problem. String theories
fall into this class. The idea is that, even without direct-
ly generating masses, Lorentz-symmetry breaking may
be responsible for the needed asymmetry. The situation
might be compared to that of a non-Abelian gauge group
G of a grand unified theory, for example, being broken to
one or more U(1) groups together with a non-Abelian
subgroup H. The U(1) gauge bosons would then be the
analogs of the four-dimensional metric components,
whereas the gauge bosons of 0 would be the analogs of
the extra degrees of freedom. The former are massless
and result in long-range interactions; the latter are
confining and macroscopically nonpropagating. The ex-
plicit implementation of this analogy is an interesting
and open problem.
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