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Probing through Cloudiness: Theory of Statistical Inversion for Multiply Scattered Data
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Wave multiple scattering is responsible for making a random medium cloudy in appearance and
opaque in the sense of structure delineation. For a randomly layered medium such as the Earth's sub-
surface, however, knowledge about the generic behavior of multiple scattering enables us to construct a
theory of statistical inversion which can recover from a signal data set the slowly varying mean character
of a medium with single amplitude only 10 that of the multiple-scattering noise. Inversion accuracy
improves systematically with the availability of statistically redundant data.

PACS numbers: 42.20.—y, 03.40.Kf, 43.60.+d

Wave multiple scattering is responsible for the cloudy
and opaque appearance of many disordered materials.
For the purpose of structure delineation or detection of
targets embedded in random media, such cloudiness has
long been recognized as a major obstacle to obtaining
useful data. Recently, however, progress in understand-
ing the statistical character of multiply scattered waves
has enabled new gains on this difficult problem. In par-
ticular, the diffusive nature of the multiply back-
scattered light was utilized to advantage in deciphering
the dynamical information about opaque colloidal sus-
pensions. '

In this work, we present a theory of statistical inver-
sion for pulse-reAection data from a randomly layered
medium. It is shown that, by taking into account the
statistical property of the reflection power spectrum
from first principles, one may be able to recover the sta-
tistical mean of the medium property even from data
dominated by strong multiple scattering. It thus demon-
strates for the first time that the cloudiness barrier may
be penetrated. In addition, since the slow variation of
the average medium property is usually difficult to recon-
struct due to the insensitivity of a pulse to structures
much larger than its width, the present theory therefore
also represents a capability which is complementary to
that of the traditional inversion approach. ' Application
of the theory to numerically simulated data demonstrates
that our method is able to recover from a single data set,
with reasonable accuracy, large-scale variations whose
scattering amplitudes are only 10 times those of the
multiple-scattering noise. With the availability of addi-
tional sets of statistically redundant data, the theory im-
proves the inversion accuracy systematically. In what
follows, we will present the theory in terms of a random-
ly layered elastic medium, such as the Earth's subsur-
face. However, both the results and the approach are
generally applicable to electromagnetic waves as well.

Our model for the inversion theory may be described
as follows: Since nature generally presets a continuous

range of length scales, the probing pulse width, defined
to be 1, naturally sets the dividing line that separates the
medium structure into two scale categories, e and 1/e,
where e is a small number. The small-scale structures
are denoted as Auctuations, and the large-scale struc-
tures are associated with the variation of the mean. For
elastic-wave (or electromagnetic-wave) propagation, we
express the bulk modulus tc(z) and the density p(z) of
the medium as

'(z) =tcp '(z)ll+cr„(z)l,

p(z) =pp(z) [1+crp(z)],

(la)

(lb)

where tcp '(z), pp(z) vary on the I/e scale and o. (z),
cr~(z) vary on the e scale for z )0, and tcp '(z)
=tcp '(0), p(z) =pp(0), o'„(z) =o~(z) =0 for z (0.
Figure 1 gives a schematic illustration of the sound speed
c(z) = [tr(z)/p(z)] 'I for such a medium where the
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FIG. 1. Model of sound speed c(z) plotted as a function of
depth z. The dip in co(z) is noted to be buried below —1000
random layers. Also shown is the Ricker wavelet whose width
is —50 random layers. Each layer in the model has a thickness
of 3m.
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large-scale structure consists of a single dip, and the
small layers are of constant thickness, lo with a„,o~ coIl-
stant within each layer and varying randomly from layer
to layer with a uniform distribution in the interval
[—0.3,0.3]. Also shown is the pressure pulse used to
probe such a medium. The goal of our inversion is to re-
cover from the pulse backscattering data at z=0 the
mean speed profile cp(z) = [rcp(z)/pp(z)] 't of the medi-
um.

The propagation of a normally incident pulse is
governed by the equations

pv —Bp/Bz,

P - —x-BU/Bz . (2b)
Here p is the pressure, v is the displacement velocity, and
the overdot denotes time derivative. By using the veloci-
ty profile shown in Fig. 1, we have numerically solved
Eq. (2) by using a fourth-order-accurate scheme to ob-
tain p(t) at z =0. The pulse shape used is the so-called
Ricker wavelet given by

f(y) =2[4+'(y —0.5)' —0.5]exp[ —4x'(y —0.5) ], (3)

where y =(t —z/c)/20 and lies in [0,1], t has the unit of
second, and f=0 for y outside of [0,1]. For lp=3 m and
cp=3000 m/sec such as those used in Fig. 1, the dom-
inant frequency content of f(y) is 40 Hz, and the pulse
width is -2cp/frequency=150 m so that a=0.02. The
effect of the macroscopic dip is represented by a tiny
modulation of the backscattered signal. To extract the
structure we must therefore use the statistical approach
based on the analysis of the power spectrum of the back-
scattered data.

Because of the nonstationarity of the back-reAected
signal, its power spectrum S(t, tp) depends on both the
frequency co and the center of the time window t at
which the power spectrum is evaluated. S(t, tp) is relat-
ed to the time correlation function of p(t),

and

u (h, co) &exp [i [y(cp —h/2) —y(co+ h/2) ]j &

&exp(iver) &, (5c)

BU B
h +2tp a(r)(1 —cosy)

B't By

where a(z) a/cp(z),

U,
Y

(6a)

p oo

a J &n(z)n(z+s)&ds, (6b)

and n(z) = [cr~(z) —cr„(z)]/2 In the .above z is the two-
way travel time defined by

pz
r(z) =2J dscp '(s), z) 0, (6c)

which may be viewed as a transformed distance variable.
In order to evaluate u(h, tp), the initial condition on U is

U ~, -p exp(iy) . (7a)

Then u is given by

where h is the difference between the frequencies.
Equation (5c) tells us that the kernel of information in

the reAected data lies in the correlation of the reAection
phases at two different frequencies. In fact, for a single-
frequency wave phase y(tp) is uniformly distributed in
the interval [0,2n] and is therefore not expected to yield
useful information. The use of a multifrequency pulse as
a probe is therefore seen as necessary. From the def-
inition of u(h, tp) we see immediately that u(0, tp) =1.
Also, since h is the conjugate variable to t [Eq. (Sb)], the
width of u as a function of t is expected to govern the
time scale of nonstationarity in the reAected data. To
achieve our goal of inversion, we must now relate the
time variation of y [and therefore N(r, co)] to the prop-
erty of the medium. From previous works on pulse
scattering and localization, ' we get

W

&p(t')p(t+t')& =(2') '„dtpexp( itpt')S(t, to)—, u(h, cp) lim U(z, g, h, tp) . (7b)

(4a)

where the angular brackets denote configurational
averaging. From the linearity of the problem, we have

S(t, tp) =-
I f(rp) I

'N(t, ~),
with

(sa)

N(t, co) =(2n) ' „dh exp( —iht)u(h, rp) (sb)

p(t) =(2n) ' J' droexp(itpt)f(cp)R(cp) . (4b)

Here f(ro) is the frequency spectrum of the Ricker
wavelet, and R(tp) is the reflection coefficient. Since a
randomly layered medium is impenetrable, we can write
R(ro) =exp[i@(cp)]. By substituting Eq. (4b) into Eq.
(4a), it is straightforward to show that

The limit in Eq. (7b) exists and is independent of y,
which follows from the assumption that a and eo are
constant for z

The physical interpretation of Eq. (6a) is as follows.
When the pulse front travels into a random medium, the
variation in y as a function of z consists of two parts.
The first term on the right-hand side of Eq. (6a) states
that h]ttl =hh, i. Since we know that y =0 for h =0, this
term merely expresses the first-order effect due to the
frequency difference: If h is sma11, then the phase dif-
ference y is also small in a given increment hr, and vice
versa. The presence of this wavelike term (BU/Br
=h BU/By has a wave solution) is important in mak-
ing Eq. (6a) casual in character. The second term,
(hy) cx: tp a(r)Ar, is clearly diffusive in nature and rep-
resents the net effect of multiple scattering by random
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a(z) - lim
S(z,cv)

~—o CO 0)
(8b)

Equation (8b) states that if the pulse has low-frequency
content, then these frequencies would be sufhcient to
determine a(z) uniquely. This is so because low-fre-
quency waves are special, due to their sensitivity to the
large structure whose scales are comparable to the wave-
lengths. At the same time, they are also most insensitive
to fluctuations. However, in many instances

~ f(co)
~

has no low-frequency content, e.g., the Ricker wavelet
given by Eq. (3), and the determination in the manner of
Eq. (8b) would not be feasible. The inversion must
therefore rely on the redundant information about a(z)
contained in the spectrum values at different higher fre-
quencies and different times. The fact that the higher-

fluctuations. The diffusion constant is noted to be pro-
portional to c0 a(z). Here a(z) represents the medium
characteristics as sensed by the refiection power spec-
trum. It contains integrated information about the
small-scale fluctuations (a) and the slowly varying mean
speed co(z). The aim of our inversion scheme is to re-
gard the noise spectrum N(z, co) [Fourier transform of
u (h, co)] as input from which to evaluate a(z).

We first note that, if ace is small, then Eq. (6a) may
be solved perturbatively' to obtain

N(z, c0) =co2a(z)+O(a'co ),
from which we can get a(z) as

frequency waves also contain information about a(z) is
not surprising. In this case although the scattering sig-
nals from large structures are small, yet the multiple-
scattering-induced diffusive behavior makes the result-
ing power spectrum sensitive to the local co(z) as evi-
denced by Eq. (6a). The effect of multiple scattering is
therefore seen to be twofold. On the one hand, it has the
well-known effect of scrambling the fine structures so as
to make them nonresolvable; yet, on the other hand, it
retains the information about the local mean property of
the medium and spreads such information among all
frequencies, thus making them available for inversion.

To extract a(z) from the data, we first note that the
spectrum S(z, c0) =

~ f(co)
~

N(z, co), calculated from
Eq. (6a) through the Fourier transform of u(h, co), rep-
resents the configurationally averaged expected value. In
reality, we can only obtain from data an estimate of
S(z, co), denoted as S(z, co), by sampling the data over a
finite time window T. If M is the number of equally
spaced data points of p(z), then the sampling time inter-
val is T/M, and S is given by

2

S(z, coj) = 1 T 2mjlg exp — ~ p(z+st), (9)
~T M t-0

where st =Tl/M T/2, and c—o~ 2tcj/T. A well-known
theorem in signal-processing theory" tells us that as
T,M ~ and T/M~ 0, S(z,cv) does not converge
uniquely to S(z,c0). Instead, the values of S(z, cv) (for
different configurations) converge to an exponential dis-
tribution with S(z, co) as the mean, i.e.,

P[S(zk, co, ) ~
a(z)] =exp[ S(zj„co,)—/S(«, c0, )a(z)]/S(zk, co, )a(z), (loa)

where P[S
~
a(z)j denotes the probability of having a

value S, given a(z). Moreover, each frequency coj. is in-
dependent. A likelihood function L [a(z)] may therefore
be written as

L[a(z)1= —2 2 In[P[S(zl cvj') I a(z)]] (1()b

Maximization of L would yield the optimal a(z) con-
sistent with the data S. %'ithin the same formalism we
can also include the effect of additive white noise. In
that case P[S ( a(z)J would still be described by an ex-
ponential distribution but with a mean of S(z, co)-

~ f(c0) ~
'N(z, cv)+o'(z) By substitut. ing this S(z, cv)

expression into Eq. (10b), we get a likelihood function of
aanda .

To actually implement this inversion process, however,
we note that since the time-domain data are causal in
nature, an approximate layer-peeling approach can
greatly simplify the numerical optimization scheme. To
accomplish this we represent the unknown functions
a(z), cr (z) by piecewise linear approximations between
the points (z;,a;) for a(z) and (z;, o; ) for a (z), where
a;-a(z;) and o; =cr (z;). If we assume that a(z),
o (z) are known up to time z; 1, i.e., all aj, a~ for j & i

are known, then the hyperbolicity of Eq. (6a) ensures
that the power spectral density at time ~; depends only
on these known values plus the next a; and o;. One thus
reduces the optimization of a many-variable function to
a series of simpler optimizations for a two-variable func-
tion.

We can also add a Bayesian' term —InP~(a;
~
a;-1)

to L(a;, cr; ) if there is some a priori knowledge about
a(z). For example, if we know that a(z) is a slowly
varying function and therefore a; is most likely to devi-
ate from a; ~ within a certain amount, then this infor-
mation may be incorporated into our inversion scheme
by letting

(a; —a; 1)'
Pti(a; i a; ))=,t, exp

Pa; 1(2n)'t2 2(Pa; 1)'

where p represents the a priori knowledge about the
function a(z). If p is set to be very large, then the Baye-
sian term would have no effect. On the other hand, a
suitable value of p in the joint minimization of L —InP~
can improve the inversion accuracy.
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We have implemented an efticient numerical scheme
to calculate S(z, to) from a given set of fa;l. The max-
imization of a is done by a hybrid method due to
Powell, ' which is a combination of the steepest-descent
and the general Newton's methods. By using the numer-
ically calculated data, the inversion is performed with
hz=2 (in units of pulse width lo/coe), M=6-60 fre-
quencies, and P =0.4. The results are compared with the
actual a(z) profile in Fig. 2. It is seen that in the initial
Aat region the inversion results hover around the correct
value. The positions of the rise and the fall of the bump
profile are both recovered fairly well, but the flat plateau
is not accurately portrayed. In view of the fact that the
structure is buried below 1000 scattering layers, and that
the pulse scattering from the dip structure [calculated
with bare cn(z) with no Iluctuations] yields a signal that
is only 10 times that of the multiple-scattering noise,
this recovery is indeed remarkable and represents an ex-
tension of the previous inversion capability. Moreover,
the probing pulse is noted to have essentially no low-

frequency content comparable to that of the structure.
Our results are also insensitive to additive white noise.
In fact, setting 0 to zero or making it finite and large in

the data yields practically identical inversion results.
The inversion accuracy can be improved systematical-

ly if there are multiple sets of statistically redundant
data. This is possible in many instances since the corre-
lation time of the small-scale Auctuations (e.g., in ocean
and atomosphere) are usually short compared to those of
the large structures. Therefore, by taking multiple data
sets over a period of time in which many small-scale Auc-

tuations can occur but during which the larger structures
remain almost static, one can utilize the redundancy to
configurationally average the data and thereby obtain a

t (sec)

FIG. 2. Comparison of the exact profile, denoted by the
solid line, with the inversion using one realization, denoted by
the dashed linc, and six realizations, denoted by the dashcd-
star line. The horizontal axis label r is the two-way travel
time. The a(z) of the vertical axis is defined by a/co(z), where

a is given by Eq. (6b) and co(z) denotes the main speed at the
position of the two-wave travel s.

more accurate inversion of the large structure. This
eff'ect is illustrated in Fig. 2, where the inversion using
data averaged over six configurations shows definite im-
provement over the single-configurational result. For the
Earth's subsurface, such configurational averaging would
also be possible if the small Auctuations have shorter
transverse correlation lengths than the large trends so
that redundant reAection data can be taken at multiple
sites on the surface.

In summary, we have presented the first statistical in-
version theory in which the knowledge of multiple scat-
tering is incorporated as an integral part. The theory is
demonstrated to work remarkably well. Since for the
present theory one prefers to use strongly multiply scat-
tered data so that the power spectrum can be well ap-
proximated by its generic behavior, our inversion method
is thus complementary to the conventional approaches
both in the selection of data as well as in the information
sought.
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