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stable' b 'X+ state to levels of the c 'll state. In our
earlier experiment, predissociation of the excited levels
was shown to result in the formation of the 0+ ions
which were separated from the 0H+ beam with a
second electromagnet and detected with an electron mul-
tiplier. This approach cannot be applied to the detection
of H ions because the large center-of-mass kinetic en-
ergy release causes the protons to spread over a. wide
solid angle. However, signals in the 0+H+ channel
can be recorded by detecting fast oxygen neutral atoms
with an on-axis multiplier as shown in Fig. 2. Separation
of H atoms from the 0++H channel and 0 atoms from
the 0+H+ channel is achieved by spatial discrimination
due to the very different angular distributions of the two
uncharged fragments. In both ion and neutral detection
modes, the laser is chopped mechanically and a lock-in

amplifier is employed. The impact of 0.5 W of cw dye-
laser radiation on the first dynode of the on-axis electron
multiplier has no detectable eA'ect on its performance.
The limiting spectroscopic linewidth of approximately 90

FIG. 2. Fast-ion-beam apparatus with on-axis detection of
0 atoms and mass-selected detection of 0+ ions.
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300- Q branch

200

100

P branch

MHz is determined by the Doppler width of the ion
beam and is sufficiently narrow to permit predissociation
lifetime broadening to be observed.

The first rotational lines in a 'll-'Z+ transition are il-
lustrated in Fig. 3. Levels with parity *(—1) are
called e levels and those with parity —( —1) are f lev-
els. ' The lifting of the degeneracy in the 'H state for a
given value of J is caused by the rotational-electronic in-
teraction, principally with the b 'X+ state, and the en-
ergy-level splitting is given approximately by qJ(J+ I),
where q is the lambda-doubling parameter with value
0.0617(2) cm ' for v 2. The intensities of the rota-
tional lines of the 2-0 vibrational band recorded in the
0+ and 0 channels are given in Fig. 4. The Q lines in-
volve excitation to levels of f-type symmetry and appear
strongly in the 0++H channel whereas the P and E
lines, which correspond to dissociation from e levels, are
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FIG. 3. Levels and rotationai lines for a 'Il-'Z+ electronic
transition. The lambda-doublet splittings are exaggerated by a
factor of 20.

I
I

3 4 S 6 7
Rotational Quantum Number 3'

I I

9 10

FIG. 4. Integrated experimental intensities in (a) 0++H
and (h) 0+H+ channels for excitation in P, g, and R lines.
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FIG. 5. Experimental linewidth I vs J'(J'+1) for e levels
detected in the 0+H+ channel and f levels with 5 & J' & 10 in
the 0++H channel.

very weak and decrease in intensity with increase in J'
value. In contrast, the I' and R lines are strong in the
0+H+ channel and the Q lines are absent. There is
therefore a symmetry-selective partitioning between
channels for f levels, and a propensity for e levels to de-
cay to form 0+H+. The higher members of the I' and
R branches of the 2-0 band exhibit predissociation life-
time broadening and Fig. 5 shows that the experimental
linewidth for the e levels with J'& 3 depends linearly on
J'(J'+1). In summary, we conclude that the 0++H
channel is open for decay of both e and f levels but an
additional J-dependent predissociation mechanism lead-
ing to formation of 0+H+ also operates for e levels.

In principle, a large number of predissociation mecha-
nisms can lead to dissociative decay of the c 'll state.
From the potential-energy curves of F''g. 1, it is seen that
the c 'H state is crossed by repulsive curves of X and

Z symmetry. The repulsive Z state appears to lie
too far above U =2 of the c 'H state to make a major con-
tribution to the predissociation rate. Both e and f com-
ponents of the c 'H state are predissociated by the Z
state which, in the absence of mixing at long range with
states correlating to the nearby 0+H+ channel, corre-
lates to 0++H. The mechanisms for the 'H- Z in-
teraction are spin-spin and second-order spin-orbit cou-
pling' and calculations in a Hunds case (b) basis show
that there is no major diA'erence in the coupling matrix
elements for e and f levels. We conclude that although
coupling to the Z state is the likely decay route for f
levels and also occurs for levels of e-type symmetry, it
cannot explain the observed symmetry-selective decay.

The major difference between the e and f components
of the e 'H state is the mixing of the e levels with the
nearby b 'X+ state under the action of the rotational-
electronic operator. The lambda-doublet splitting in the
c H state is one manifestation of this interaction. How-

B
( + 1) g v(n), v(z)

v(z) I ~&U, (n), U(x) I

2

where I,(~) is the predissociation linewidth for vibration-
al level U of the b 'Z+ state arising from spin-orbit in-
teraction with the A II continuum, ('II IL+ I

'Z+) is

the matrix element of the rotational-electronic operator,

and AF. ,~~),~~) is the vibrational energy-level separation.
The values of B,~&),(&) were calculated by numerical in-
tegration using the vibrational wave functions derived
from experimental Rydberg-Klein-Rees c 'H and ab ini-
tio b 'Z+ potential-energy curves. Use of experimental
curves for the b 'Z+ and A H states would be preferred
but these data are not yet available. The value of the
matrix element ('II

I
L ~ I

'Z+) was determined from the
experimental lambda-doubling parameter q, and the
linewidths of the b 'Z+ levels were taken from Ref. 8.
The calculated widths range between 7.3 MHz for J'(e)
=1 and 330 MHz for J'(e) =9, compared with an ex-
perimental width of 260(20) MHz for J'(e) =9. The
agreement between the theoretical and experimental
linewidths is therefore very good and the observed
J(J+1) dependence is also reproduced. It is of interest
to note that a similar symmetry-selective eff'ect occurs in
electron autodetachment from the NH molecule. ' '

In summary, we have found that a symmetry-selective
rotational-electronic mechanism operates in the predisso-
ciation of OH+ (c 'II) and induces partitioning between
the 0++H and 0+H+ dissociation channels. Experi-
mental and theoretical studies of dissociation from other
vibrational levels, spectroscopic assignments of lines in
both c 'll-b 'Z' and c 'H-a '6 band systems, and full de-
tails of the calculations described here will be reported in
future papers.

ever, this mixing does not provide a direct dissociative
decay route because the b 'Z+ state correlates to the en-
ergetically inaccessible 0('D) +H+ limit. However,
Fig. 1 shows that there is good overlap between the
repulsive parts of the b 'Z+ and A H curves at the inner
turning points near 0.8-A internuclear separation.
Spin-orbit interaction between these states causes the
levels of the b 'Z+ state to be quite strongly predissociat-
ed; the calculated predissociation lifetimes for U =5-7 of
the b 'Z+ state are 2-3 ps. Therefore the b 'X+ state
can act as a "doorway" state for dissociation of c 'll lev-

els into the continuum of the A H state which correlates
to the 0( P)+H+ dissociation limit. A demanding test
of this hypothesis is the calculation of predissociation
lifetimes for the e levels which may then be compared
with the data presented in Fig. 5.

The linewidth r, tnt for a vibrational level v(II) of the
c 'H state can be expressed
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