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Chaotic but Regular Posi-Nega Switch among Coded Attractors by Cluster-Size Variation
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A globally coupled map lattice is investigated. A simple coding of many attractors with clustering is
shown. Through the coding, the attractors are organized so that their change. exhibits the period-
doubling bifurcation. By a simple input on a site, we can switch among attractors and tune the strength
of chaos. A threshold on the cluster size is found beyond which a peculiar "posi-nega' switch occurs.

PACS numbers: 05.45.+b, 05.90.+m, 87.10.+e

The study of coupled chaotic systems is important not
only as a model for nonlinear spatially extended systems
but also from the viewpoint of biological information
processing and possible engineering applications. Cou-
pled map lattices (CML) have been proposed as simple
models for spatiotetnporal chaos and been extensively in-
vestigated.

Here we investigate the following globally coupled
map lattice:

N

x.+ ) (i) = (1 —e)f[x„(i)] +—g f[x„(j)],Nj ——]

where n is a discrete time step and i is the index of an
element (i = 1,2, . . . , N = system size). This is an ex-
treme limit of long-range coupling and a mean-field-
theory-type extension of previous CML's. ' We choose
the logistic map f(x) =1 —ax, as a prototype for a sys-
tem of globally coupled chaotic systems.

The questions addressed to this system are:
(A) Does this model give a kind of "mean-field

theory" for the rich variety of phases in the paltern dy-
namics in CML (Ref. 6) and give any better understand-
ing of the transition?

(B) If the frozen random state in CML is related with
a "glassy" phase, can the model (1) play a similar role
for the state as the "Sherrington-Kirkpatrick model" has
played for spin glasses (SG)? Is there any significant
diA'erence between our frozen state and SG?

(C) Is there a way to organize many attractors (some
of which are chaotic and others of which are periodic)?
Are there any bifurcationlike phenomena associated with

the change of attractors?
(D) Is it possible to "code" the attractors, so that we

can switch among attractors as we like through a simple
input? If so, is there any interesting behavior with possi-
ble application to information processing?

All of these questions are answered in the afhrmative
in the present Letter and subsequent papers. Here we

study a case where the attractors are well organized and
the "switch" among attractors is regular ("posi-nega"
switch) even in the presence of chaos.

First, we discuss the possible types of attractors in our
model (1). The simplest attractor [type (i)] is the one
with x(i) =x(j) for all i,j, in which case the motion is
governed just by the single logistic map. The stability of
the attractor is easily calculated from the products of
N-dimensional Jacobi matrices for the mapping (1),
f'(x„)[e/N+(I —e)B;l]. From simple algebra, we get
the stability condition for the coherent attractor,
X+In(1 —e) (0, where A. is the Lyapunov exponent of
the logistic map.

Besides the above single-clustered coherent attractor,
we have the following two types of attractors with clus-
tering, that is, the system splits into k clusters, and
x(i)=x(j) for i,j Cthe same cluster: (ii) Attractors
with a small (much smaller than N) number of clusters.
(iii) Attractors with a large number of clusters (of the
order of or equal to N). '

If the elements i,j belong to the same cluster, the dy-
narnics of x(i) and x(j) is governed by the same dynam-
ics, as is seen from Eq. (1). Thus our dynamics (1) can
be replaced by the following k-dimensional map after
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F!G. l. Phase diagram of our model (1): Phases are determined by the basin volume ratio for k-cluster attractors. The ratio is
calculated from the number of initial conditions which lead to a k-cluster attractor. Calculated from 500 randomly chosen initial
conditions. N=200. The parameter a is changed from 1.4 to 2 by 0.01, while e is changed by 0.02. The numbers such as (1,2,3)
show dominant cluster numbers whose basin volume ratio is more than 10%.

our system falls on the k-cluster attractor:

(2)

where X„' denotes the value of x„ in the vth cluster, and
the "effective coupling" e„ is given by e„=eN„/N. N„ is
the number of elements which belong to the pth attrac-
tor.

By taking a randomly chosen set of initial conditions,
we can calculate the basin volume for each class of at-
tractor. '' "Phases" are classified from the basin volume
for attractors of each type: (1) Coherent phase: Almost
all initial conditions lead to the coherent attractor. (2)
Ordered phase: Type-(ii) attractors take almost all
basin volumes. (3) Partially ordered phase: Both type-
(ii) and type-(iii) attractors have basin volumes. (4)
Turbulent phase: Type (iii) takes almost all basin
volumes. The phase diagram is shown in Fig. 1, where
the conditon of "almost all" is judged by the basin
volume ratio larger than 90%. ' We note the large re-
gion of ordered phase.

Hereafter we discuss the case with a=0.3 in more de-
tail. After a transition from the coherent phase, we have
found all of the three types of attr actors, for 1.6
~ a ~ 1.72, although the attractor of type (ii) has a
large basin volume (more than 50%). For a & 1.74, the
basin volume for two-cluster attractors occupies a large
ratio, which is more than 95% for a & 1.84.

In the present Letter, we focus on the parameter re-
gion in which two-cluster attractors are dominant. Here
the motion of attractors is period-two band (chaotic or
periodic). A coherent attractor has a very small basin

volume even in the periodic-window regime of the logis-
tic map, where the existence of a stable coherent attrac-
tor is assured. The two clusters oscillate out of phase
with each other, i.e., in one cluster x(i) changes as
+ —+—,while the other as —+ —+, where
+, —is distinguished by whether x(i) & x* or not, with
x * as the unstable fixed point of logistic map
[(1+4a) ' —1]/2a (this distinction is also used in a
short-ranged CML ). We define the cluster with
x2„(i) & x* to be "+," and the other "—." The number
of elements belonging to each cluster is written as N+
and N -, respectively (N+ +N =N).

The above two-cluster attractors exist for N —Nth,(N+ & Nth„. The threshold Nth, is obtained numerical-
ly, and depends on the value a and is proportional to
N (Nth, =cN). The coefficient c increases with a
(c=0.56 for a =1.85 and c =0.63 for a =2.0). Since
there are N!/(N+!N !) attractors for —each (N+, N —)
condition, the number of attractors grows exponentially
with N.

How does the state of each attractor change with N+?
As in Fig. 2, xz„(i)'s clearly exhibit the period-doubling
"bifurcation" to chaos as a function of N+. Although
this looks like a bifurcation, the parameter is fixed here
and all that we have done is to arrange the attractors in
the order of N+. In other words, we have found a simple
way to organize the many attractors, through which the
change of attractors can be seen just as in the bifurca-
tion.

This is not so surprising, since, if we confine ourselves
to two-cluster solutions, the dynamics are written by the
following two-dimensional coupled map' as a special
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FIG. 2. Change of dynamical state with the change of clus-

ter size: xq„(i)'s (n =2000, 2001, . . . , 2260) are plotted as a
function of N+ for i belonging to the + cluster. a=1.98,
e =0.3, N = 1000. Nth, =626, as is seen.

case of the k-dimensional map,

X„'+, =(I —~ )f(X„+)+~ f(X„-),
(3)

X„+1=(I —e+)f(X„)+a+f(X„+),
with X„+,X„as x„(i) for each cluster, and E. +.

=eN~/N. Thus the change of N+ corresponds to the
change of bifurcation parameter in the two-dimensional

FIG. 3. Site-time diagram: If x2„(i))x*, the correspond-
ing pixel (i,n) is painted black, otherwise left blank. The ar-
row indicates the input 6= —0.5 on the corresponding site and
time. a =1.85, m=0. 3, and N =50. By successive inputs on
site in —cluster, N+ is increased from 22 to Nth„=28, and
then a posi-nega switch occurs. Next, by the input to + clus-
ter, the switch again occurs.

map. We have to note, however, that the above reduc-
tion is possible only after the system has fallen onto two
clusters. We cannot, for example, obtain Nth„by the
two-dimensional map.

Next, let us consider the jumping among attractors by
an input. We put an input 8„(j)onto a single site j, at a
single time step n and wait for a while before the system
settles down to another (or the same) attractor. '' If

~
8

~

is smaller than a threshold, the system goes back to the
original attractor after few steps. For larger ~6~, we
can make a switch from one attractor to another. By an
input on the site j, this site is switched from the + clus44
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0 time ( per 2 steps ) 600
FIG. 4. The time series with switches among attractors. x2 (i)'s for all i are plotted as a function of time. If there are only two

lines, the system has fallen to two clusters at the time step. The arrow (with +/ —) indicates the input 6'= —0.7 on a site belonging
to the +/ —cluster. At (a), the system comes back to the original attractor, while at (b) and (c), it exhibits the posi-nega switch.
a =1.9, a=0.3, and N =50. Nthr =30.
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ter to —,or vice versa. Thus we can change N+, by suc-
cessive inputs of 8„(j). (See Figs. 3 and 4.) In this
manner, we can "control" the attractors through an in-
put.

Then, what happens if we try to increase N+ beyond
N&h, or decrease below N —Nth„? Surprisingly, after
intermittent-chaotic ' transients, all + sites change to-
and vice versa (see Fig. 3), unless the system comes back
to the original attractor. If our dynamics were confined
within two clusters, this might not be so surprising, since
the dynamics would be governed by the two-dimensional
map. However, this is not the case. In the transient
time, the system can split into more than two clusters.
The above regular posi-nega switch means that even in
the transients, the system still has a strong memory of
the previous two-cluster state and the channel to any
other states of diA'erent +/ —distributions is not open or
too small to be observed. Schematically this is written as
"n "n-+"I"= = "Nth, "=(intermittent transient)

"N Nthr "N Nthr+ 1" . , with "n" as a
two-cluster attractor with N+ =n.

In terms of dynamical systems, the switch belongs to
the phenomena called "crisis, "' but the crisis here is not
confined into a two-dimensional phase space, but con-
nects to a higher dimensional space, and then comes
back to the original two-dimensional phase.

For soine parameter values (e.g. , a =2.0, N =30), the
above intermittent state is not transient but an attrac-
tor. ' The control by the input still works, which is
schematically written as "n"-"n + 1"=
="chaotic attractor with spontaneous intermittent
s~itches between N+ =Nthr+ 1 and N+ =N

1" "N —N " "N —N + 1"
In this Letter, we have discussed the simplest case of

the clustering and switch of attractors. The two-cluster
phase in our model (I) corresponds to the mean-field
limit of the "pattern selection" in CML, in which few
patterns are selected by the suppression of chaos. In
our present model again, only the two-cluster attractors
are selected, with the strong suppression of chaos.

For smaller nonlinearity and/or coupling, we have seen
a variety of cluster numbers (k & 2). In this phase, the
coding of attractors requires both the number of clusters
k and the number of elements in each cluster
N~, Nz, . . . , Nt, . The dynamical state strongly depends
on k and N t, N2, . . . , Nq. This state corresponds to the
mean-field limit of a "frozen random pattern" in CML.
It is again possible to organize the attractors and to code
the switch. By a switch between the states with
diA'erent number of clusters, we can change even the
relevant degrees of freedom. In the general situation,
the switch can depend not only on the attractor but on
the internal state x(i) of the attractor. For example, we
have observed a fuzzy posi-nega switch, in which the
probability of the transition += —at each site is close
to, but not equal to, unity.

Chaotic switches between attractors are discussed in
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the pioneering paper by Davis, ' where the adaptive
change of a parameter is required. In our case, all the
attractors are organized so that the switching is possible
only by a simple input.

Lastly, is our observation relevant to biological infor-
mation processing as has already been argued? "
Neural dynamics is a nonlinear system with global cou-
pling, and our model (I) is one of the simplest among
the class of dynamical systems. Thus we may hope that
our model may capture some of the essential features of
neural dynamics. When we look at some of Escher's
figures, ' for example, we wonder what is the figure"
and what is the "background. " If we do not decide
which is the figure from a higher level (by attention' ),
our mental state wanders, but once we decide which is
which, we can understand the figure easily. This
wandering state may be similar to our intermittent
switch between + and —.Since an experiment on the
olfactory bulb illustrates the existence of chaos in the
searching process, our observation (especially the posi-
nega switch) may be relevant to biological information
processing.

The author would like to thank Peter Davis for stimu-
lating discussions, and Martin Casdagli and David
Campbell for critical reading of the manuscripts.
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