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In currently used lattice formulations of quantum electrodynamics, even though gauge fields are intro-
duced as noncompact degrees of freedom, the constraints of gauge invariance imply that fermion fields
are sensitive to features best described by compact or periodic variables such as magnetic monopoles.
Results from a quenched simulation are presented, showing the existence of a percolation threshold for
monopole current networks near the chiral-symmetry-breaking transition already known to occur from
previous studies. Implications for the mechanism driving the chiral transition are discussed.
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The possibility of a nontrivial strongly coupled contin-
uum limit in quantum electrodynamics (QED) has re-
ceived much recent attention. In particular, numerical
simulations of both quenched' and full versions of the
theory on the lattice have measured the chiral-con-
densate order parameter (pry) in the neighborhood of the
continuous chiral-symmetry-breaking transition, and
yielded evidence for significant deviations from mean-
field behavior. A crucial component in these simulations
is the noncompact formulation of the gauge variables.
The lattice action is

S =Sgauge+SFermi(e) '

Sg,„g,= —,
' +[8„(n)+8„(n+p) 8„(n—+ v) —8,(n)]'

npv

—= —,
' ge„',(n),

npv

SF„;= —,
' g[ilt(n) y„exp[ie8„(n)]y(n+ p) —H.c.j

np

+mg ilt(n) y(n),

where the gauge fields 8„(n) are oriented real variables
in the range ( —~, +~) defined on the lattice links, and
the Euclidean fermion fields tlt(n), tlt(n) are anticommut-
ing (in practice the staggered formulation is used). No-
tice that as in the continuum version, the electron-photon
coupling e only appears in SF„;. Because the gauge
fields are noncompact, S~,„g, is invariant under local
gauge transformations defined by the group of real num-
bers R:

would be insensitive as to whether a particular 6„,was
equal to 0 or 2 /ter, for instance. This is inherent to the
way gauge invariance is introduced into the discretized
action. In principle, therefore, any fermionic correlation
function such as (yy) may well be sensitive to gauge
configurations particularly associated with the periodic
nature of the compact formulation, even though such
features play no role in the dynamics controlled by S~,„g,
alone, such as in the quenched model considered here.
In this Letter we hope to demonstrate that there are
indeed periodic "excitations" or "defects" which are im-
portant in driving the chiral transition —namely, mag-
netic monopoles.

In continuum electrodynamics, a magnetic monopole
is defined as the end point of a Dirac string, that is, a
long solenoid of infinitesimal radius bearing magnetic
flux to the monopole's spatial position, whereupon it
spreads out equally in all directions to resemble the flux
from a point source. Quantum-mechanical considera-
tions dictate that the flux be quantized; the smallest flux
which can be carried by a string is thus 2 /et. rIn a lattice
formulation we can say a plaquette is traversed by a
Dirac string if the sum of the angles around the pla-
quette ee„„~2n. Such a plaquette is equivalent to the
identity under compact gauge transformations, but car-
ries a nonvanishing contribution to the Sg,„g, defined in
(I). This motivates the following definition of magnetic
charge on a lattice, first used in compact electrodynamics
by DeGrand and Toussaint. For every plaquette on the
lattice, identify the Dirac string content by

8„(n)~ 8„(n) A(n)+A—(n+P), A(n) e R. (2) ee„,(n) =ee„,(n) +2tts„„(n) . (4)

However, SF„; is invariant under a smaller gauge
group, namely, R/Z —U(1):

y(n) exp[ —ieA(n)] i'(n); ttt(n) y(n)exp[ieA(n)] .

(3)

In other words, regardless of the form of Sg,„g„ the Fer-
mi fields only perceive compact gauge interactions, and

The integer s„, determines the strength of the string
threading the plaquette, and ee„„C( —tr, tr]. The
integer-valued monopole current m„(n), defined on links
of the dual lattice, is then given by

m„(n) =e„,„~h~„i,(n),

where d„ is a lattice difference operator; i.e., m„ is the
oriented sum of the s„, around the faces of an elementa-
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ry cube. This definition implies the following constraint:

a„m„(n) =0. (6)

This means that the monopole world lines can either
form simple closed loops, or wrap around the lattice, i.e.,
intersect the boundary an odd number of times and close
due to periodicity. These loops are spanned by Dirac
world sheets, which are defined by the plaquettes dual to
those originally enclosing the string. It is important to
note that the monopole current defined in this way is
crucially dependent on e: The coupling constant is neces-
sary in defining compact degrees of freedom in terms of
the noncompact 0„.

The influence of monopoles on the phase structure of
quenched compact lattice QED has been understood for
some time. ' At weak coupling the loops are small and
sparse and have little eff'ect on the vacuum, whereas at
strong coupling they enlarge and condense to form a
spaghettilike plasma which disorders the phase of
Wilson-loop correlation functions and renders the vacu-
um confining. However, there are important diff'erences

between the monopoles in the compact theory, and the
effective monopoles in the noncompact theory, which are
worth noting. In the former case magnetic flux is con-
served modulo 2z, so that the Dirac sheet spanning a
loop can be shifted about arbitrarily using suitably
chosen gauge transformations. Thus the Dirac sheet can
cost no action, and we might expect the loop's action to
be proportional to its perimeter: This picture is con-
firmed by a sequence of transformations on the Villain
form of the compact action, which yield an interaction
term of the form m„(x)v„,(x —y)m„(y), where v„,(r) is
the (gauge-fixed) Coulomb propagator, which in four di-

mensions decays as r . The loop action is dominated

by the chemical potential per unit length v„„(0), and
hence displays a perimeter law. In the noncompact case,
the flux defined by ee„, is absolutely conserved, and the
Dirac sheet does cost action, although as explained
above, SF„;is completely insensitive to the sheet, feel-
ing only the encircling monopole current. There is no
chemical-potential contribution as such, since the action
only increases infinitesimally when ee„, changes from
x —e to x+ e. On this basis we might expect an area law
for the eff'ective monopole loops. Unfortunately a tran-
scription to an action written in terms of the loops or
even the plaquette variables remains elusive; the e„, in

Sg&Ugz are highly correlated due to Bianchi and Gauss-
law constraints. Hence we must resort to numerical
studies to assess the influence of monopoles in noncom-
pact QED.

We performed numerical simulations using the action
Ss,„s, in (1) on a 12 lattice with periodic boundary con-
ditions, using the technique described in Ref. 5. We
worked in Feynman gauge and generated configurations
in momentum space, returning to configuration space via
a fast-Fourier-transform routine. Because Sg,„g, is diag-
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onal in momentum space, this method generates a sta-
tistically independent configuration at each sweep, and
eliminates critical slowing down. For each configuration,
the monopole current network for a variety of values of
P= 1/e in the range [0.15,0.31] was determined using
the method described above. Numerical studies of the
chiral phase transition in the quenched theory' have
shown that this is the range of interest. Once the mono-
pole network was established, we measured the following
quantities to try to find what was going on:

(i) The total amount of monopole current I —=

g,„~m„(n) ~. In principle, the current elements m„(n)
can take on all integer values between —2 and +2;
however, the overwhelming majority of nonzero links
were ~1.

(ii) The total area of Dirac sheet a =g„„„~s„,(n) ~.

As explained above, in a compact formulation this quan-
tity has no gauge-invariant meaning, but it does make
sense in the noncompact case and might yield some in-
formation about the shape of any loops present.

In addition to these relatively simple measurements,
we also used a routine devised to trace out individual
loops and hence obtain the distribution of loop sizes.
Such techniques have proven very successful in studies of
compact QED, where it has been shown that in the
confining regime the vast majority of the monopole
current line length resides in loops which wrap around
the lattice many times. This is consistent with the plas-
ma picture described above. Accordingly we also mea-
sured the following quantities:

(iii) The total amount of monopole current l„which
forms part of any loop which wraps at least once around
the lattice in any direction.

(iv) The total number of loops nI.
The results over 100 sweeps are shown in Fig. 1. Both

(I) and (l„) are given as a fraction of the total number of
dual links in the lattice WI. It is clear that monopoles
are present in measurable numbers at these values of P;
however, the variation of (l) with P is smooth and shows
little sign of any discontinuity associated with a phase
transition. The ratio of sheet area to perimeter (a)(l)
varies from just above 4 at weak coupling, which is the
expected value if the monopole loops exist as isolated
plaquettes, to just below —,

' at P=0.15, at which value
one might expect each plaquette to share on average two
edges with others in the sheet, suggesting that loops form
in long "streamers. " Wrapping loops assert themselves
below P =0.21, and by P=0.15 do indeed dominate the
monopole networks. However, the critical region for the
chiral condensate lies in the range [0.24,0.301, ' and the
only quantity which gives any indication that this is an
interesting region is (nl) which peaks smoothly around

P =0.25.
It would appear that even if monopoles do play an im-

portant role in the dynamics of the chiral transition, the
criteria we have chosen so far do not reflect this in the
same dramatic way that (l) (Ref. 3) or (l„) (Ref. 6)
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FIG. 1. Plot of (I)/Ni (full circles), (l )/NI (open circles),
(a)/(I) (triangles), and (ni) (squares) against p.

FIG. 2. Plot of probability of connected sites forming part
of the largest cluster (n, Jni, t) (squares), and susceptibility g
(full circles) against p.

reflect the confining transition in the compact theory.
One explanation could be given in terms of the shapes of
the loops in the two theories. If noncompact monopole
loops really do obey an area law, then it is plausible that
a given loop may intersect itself many times because the
action does not favor a large separation of the mono-
pole-antimonopole pair. Under this circumstance the
loop tracing routine we used will not necessarily find the
longest possible closed path, since at each dual site visit-
ed by more than one current line, the program must
make a choice about how to continue the loop being
traced. We can conceive of a regime where monopole
loops are dense enough to extend across the lattice, but
the probability of choosing the correct path at each in-
tersection so as to wrap around the boundary is still
negligible. This suggests that a more efIective measure
of monopole activity is to neglect the vector nature of the
current altogether and simply count the numbers of dual
sites joined into clusters by monopole line elements. It is
not dificult to convince oneself that it is then possible to
draw a closed monopole loop running through every site
of such a connected cluster.

The problem of identifying clusters in this way is
known as bond percolation and has a long history in sta-
tistical mechanics as an ideal environment for studying
critical phenomena. Most studies assume that bonds are
occupied randomly with probability p: The basic idea is
that at some critical concentration p„ the largest con-

n max

2 2
g ~ gnn nmax ntot

,n 4
(7)

Although neither quantity is uniquely defined, both show
unambiguous evidence for a percolation threshold at
p=0.24, which remarkably is very close to the position
of the chiral transition as determined by a mean-field fit
to numerical data for (yy) at strong coupling' (the

nected cluster becomes infinite in extent, and begins to
occupy a macroscopic fraction of the lattice sites. This
point is called the percolation threshold. It is known

from series expansions that for four-dimensional bond
percolation defined in this way, p, =0.16. We can see
from Fig. I that (l)Ni ' assumes this value for p
=0.225, much nearer the range of interest: Moreover,
our bonds are not distributed at random but are correlat-
ed, both by the (poorly understood) dynamics of Ss,„s„
and by the kinematic constraint (6). This correlation
will shift the percolation threshold, if one exists, to even
smaller values of (l)NI

To test for percolation we ran the system for a further
fifty sweeps, this time counting the size n and number of
occurrences g„of all connected clusters at each value of
p, using an efficient serial algorithm. In Fig. 2 we

display our results for the number of sites in the largest
cluster n,„as a fraction of the total number of connect-
ed sites nt, t, and also the susceptibility g, defined by
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true position of the quenched transition is more difficult
to determine, but occurs at a slightly higher value of P).
We consider it extremely implausible that these two phe-
nomena are unrelated; there is strong circumstantial evi-
dence that chiral symmetry breaking in lattice QED is
driven by the onset of large, tangled loops of eAective
monopoles. However, we should be wary of looking for a
connection with semiclassical formulations, since nu-
merical evidence' suggests that chiral symmetry break-
ing arises from short-ranged eAects: Perhaps we should
regard the monopoles as lattice artifacts. Even so, it is
difficult to reconcile this result with the self-consistent
treatments of the continuum gap equation in the
quenched planar approximation, which account for the
chiral transition without taking account of the compact
nature of the fermion-gauge interaction.
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