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We compute the velocity autocorrelation function of a tagged particle in a two-dimensional lattice-gas
cellular automaton using a method that is about a million times more efficient than existing techniques.
A t ! algebraic tail in the tagged-particle velocity autocorrelation function is clearly observed. The am-
plitude of this tail is predicted to within a few percent by a lattice-gas version of mode-coupling theory.
The magnitude of logarithmic corrections to the ¢ ~! tail is much smaller than expected for continuous
fluids.
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Lattice-gas models are ideally suited to serve as a test-
ing ground for concepts in kinetic theory. This is so be-
cause the simple structure of lattice-gas models makes it
comparatively easy to work out the consequences of a
particular approximation scheme in kinetic theory. Such
approximations can then be tested numerically, because
lattice-gas models are well suited for simulation. In this
Letter we present a computational scheme that makes it
possible to compute certain transport properties of lattice
gases with hitherto unachievable accuracy. Using this
technique it is possible to compute the tagged-particle
velocity autocorrelation function (VACF) in a simple
model for a hydrodynamic fluid, namely a two-dimen-
sional (2D) lattice-gas cellular automaton (LGCA) of
order 102 to 103 collision times, thus enabling us to mea-
sure accurately the amplitude of the ¢ ~! long-time tail
and, for the first time, to estimate an upper bound to the
magnitude of logarithmic corrections to it.

Such calculations are of fundamental interest for the
following reason: Algebraic long-time tails in the VACF
of a tagged particle in an atomic fluid were first reported
in a classic paper by Alder and Wainwright.! These
long-time tails are the consequence of coupling between
particle diffusion and shear modes in the fluid. Accord-
ing to mode-coupling theory, the leading term in the
long-time tail of the VACF for dimension D > 2 is

—1 (vxz(O)) - do
D plan(Do+v)t]1P/2 P27

where p is the number density and Dy and vy are the
“bare” self-diffusion constant and kinematic viscosity,
respectively. Ever since the discovery of these hydro-
dynamic tails, it has been realized that a consistent
description of mode-coupling effects in a 2D fluid would
result in a long-time tail that decays faster than ¢ ~!, be-
cause in 2D the constants of self-diffusion and viscosity
diverge (see, e.g., Ref. 2). A theoretical estimate for the
first correction to the ¢ ~! tail in a system of hard disks

(0, (0)v (1)) = 2 %))

was given by de Schepper and Ernst.?> According to Ref.
3, this correction [d, in Eq. (2)] is negative and propor-
tional to In(¢/29)/t (where to ! is the initial decay rate of
the VACF)

(x (0o, (1)) =do/t +d In(t/to)/t+ - - -, 6]

for #/tg>> 1. Forster, Nelson, and Stephen* argued that
as t — oo, the tail should be renormalized to 1/z(Inz) /2.

Thus far it has not been possible to compare these pre-
dictions directly with computer simulation data because
accurate computation of the VACF for /19> 1 requires
lengthy simulations on large systems.

The present paper focuses on the properties of two-
dimensional LGCA’s on a triangular lattice [Frisch-
Hasslacher-Pomeau (FHP) model>®]. However, the
technique has also been applied to other 2D and 3D
lattice-gas models such as the square-lattice Hardy-de
Pazzis-Pomeau (HPP) model,” and lattice Lorentz
gases [see Ref. 8].

In LGCA'’s the particles are constrained to move along
the bonds joining the lattice sites. No two particles can
move along the same bond in the same direction. The
state of the lattice is completely specified by indicating
which links are occupied and which are empty. This im-
plies that lattice-gas particles are indistinguishable.

The time evolution of the system is governed by the
following rules: (1) Propagation: all particles move in
one time step (for convenience we choose Az =1) from
their initial lattice position (say, r) to a new position
r' =r+c,, where ¢, is the velocity of species a. (2) Col-
lision: the particles at all sites on the lattice undergo a
collision that conserves the total number of particles and
the total momentum at each site. Usually, these collision
rules are deterministic.

Provided that the lattice has a sufficiently high sym-
metry (for a discussion, see Ref. 9), the equation that
governs the time evolution of the distribution function of
such a lattice gas becomes equivalent to the Navier-
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Stokes equation for an incompressible fluid if the flow
velocity is much less than the speed of sound, and all
spatial variations in the system occur on a scale that is
large compared to the mean free path of the lattice-gas
particles. In this respect LGCA’s model atomic fluids.

When attempting to compute the VACF of a particle
in a lattice-gas cellular automata, one is immediately
confronted with a conceptral problem. As all lattice-gas
particles are indistinguishable, the VACEF of “a particle”
is ill defined. As soon as a particle has collided it is no
longer possible to tell which of the outgoing particles is
the original particle whose VACF we are attempting to
compute. To avoid this problem, the particle under con-
sideration must be labeled differently from the rest (say,
a “blue” particle in a sea of “red” particles). Once the
collision rules for the red and blue particles have been
specified we can compute the VACF of a single tagged
particle. Such an approach has been attempted by Boon
and Noullez for the FHP model!® and by Binder and
d’Humiéres for the HPP model.!! However, this method
yields poor statistics (only one tagged particle is permis-
sible) and long-time tails could not be detected. An al-
ternative approach has been followed by Colvin, Ladd,
and Alder.'? These authors were primarily interested in
the VACF of a tagged particle in a discretized model of
hard hexagons on a lattice, but for the sake of compar-
ison, they also measured the autocorrelation function of
the fluid velocity at a lattice site in a 2D LGCA. Colvin,
Ladd, and Alder were able to detect a long-time tail in
this site VACF. However, the long-time behavior of this
site VACEF is essentially described by the solution of the
diffusion equation for small displacements and is, there-
fore, from a theoretical point of view, of less interest.

In order to implement our numerical scheme to com-
pute tagged-particle VACF’s, we must impose one re-
striction on the rules of the lattice-gas automaton, name-
ly that the collision rules for a tagged particle with un-
tagged particles result in the occupation of the same out-
put states as in the case of collisions between untagged
particles. And, most importantly, the tagged particle has
equal probability to be in any of the occupied output
states. Hence, for the tagged particle the collision rules
are stochastic, although to a “color-blind” observer, the
rules appear deterministic. Note also that even in “col-
lisions” that have the same input and output states the
tagged particle may still change its state.

The essential feature of these rules is that the average
velocity of a tagged particle after a collision at site r de-
pends only on the (colorless) state at that site. We can
thus define for every nonempty site of the lattice the
average-post-collisional velocity of a tagged particle at
that site,

N oee(r)

1
v, (1) N azl Ca, 3)

where Noc(r) is the total number of particles at site r,
and c, are the velocities corresponding to the occupied
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links. Note that the site velocity at any lattice site r
changes with every time step.

Let us now compute the VACF, (v(0)-v(z)), by fol-
lowing the histories of all particles that end up at posi-
tion r' at time =0. To this end we transport the site ve-
locity v,(0) [Eq. (3)] to all “connected” neighboring
sites. Site r+c, is considered connected to r if the veloc-
ity state c, at site r is occupied at the start of the propa-
gation step. Next, we compute the average on every lat-
tice site of these propagated averages. We denote this
new set of averages by v(’(r). These averages are
thereupon propagated to all neighboring sites that are
linked at =1 and averaged. This yields the set v @ (r).
Iterating ¢ times, we obtain at all sites r’' the average
v®(r'), which is precisely the average of all possible ve-
locities v(z=0) that a tagged particle that finds itself at
site r’ at time ¢ could have had at t=0. Simply multiply-
ing this quantity with the instantaneous velocities of the
tagged particles that are at site r' at time ¢ and averaging
over all particles yields our estimate for (v(0)-v(z)).

Note that in order to compute the VACF of a tagged
particle, use was made of all possible starting positions
and trajectories that such a particle could have, compati-
ble with the (deterministic) dynamics of the underlying
“uncolored” lattice gas. This greatly improves the sta-
tistical accuracy. The only additional averaging is over
all possible time origins and over independent initial con-
ditions. The present method is similar in spirit to the ex-
act enumeration method of Ben-Avraham and Havlin!?
for kinetic walks on random lattices. The important
difference is that by computing a moment of the distri-
bution function rather than the function itself, we gain a
factor equal to the number of lattice sites (for more de-
tails, see Ref. 8).

Simulations of tagged-particle diffusion were carried
out for a 2D lattice-gas model (FHP-III, six speed-one
particles, one rest particle, with alternating collision
rules for odd and even time steps, see Ref. 6). System
sizes of up to 5S00x500 lattice points were studied at
densities d ranging from 0.05 to 0.75 (i.e., 5% to 75% oc-
cupancy per velocity state).

Figure 1 shows the velocity autocorrelation function of
a tagged particles in the 2D lattice gas at a density
d=0.75. The VACF has been normalized to one at
t=0. Here, and in all other cases shown, correlations
were only computed for time intervals less than the
shortest time in which any particle could cross the
periodic box. In many of our calculations the statistical
error is of order 10 ~¢, which is about a factor 103 lower
than has been achieved with conventional techniques.
Note that such an error reduction corresponds to a gain
of 10° in computer time.

Initially the decay of the VACEF is approximately ex-
ponential. The characteristic decay time t¢ of this ex-
ponential ranges from 5.6 at 4 =0.05 to 0.33 at d =0.75.
There is a surprisingly large time interval where the de-
cay is no longer exponential but not yet algebraic. How-
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FIG. 1. Example of the normalized velocity autocorrelation
function of a tagged particle in a 2D lattice-gas cellular au-
tomaton (FHP-III) at a density of 75%. Note that after an in-
itial rapid decay (and overshoot), the VACF approaches a
power-law decay with an exponent —1. The estimated error
(open circles) decreases with increasing ¢ to a value of order
10 7% In Ref. 10 the statistical error in the long-time tail was
of order 0.3x10 "2

ever, after some thirty collision times the decay appears
to become algebraic. In order to see this latter effect
more clearly, Fig. 2 shows the function #{v(0)-v(z)) for
densities 0.1 =<d <0.75. If the VACF decays as ¢ !
then the curves in Fig. 2 should approach a constant
value as t— oo, Such behavior is indeed observed. This
in itself is maybe not surprising, but it is reassuring as it
has been argued that the hydrodynamic long-time tails
observed in computer simulation on continuous systems
may be due to a propagation of numberical errors.'* In
the present simulation the discrete dynamics of the lat-
tice gas is solved exactly, hence propagation of numerical
errors is ruled out as a factor affecting either the power-
law tails or, for that matter, any corrections to the latter.

We have compared the measured amplitude of the ¢ ~!
tail with the predictions of mode-coupling theory'?
adapted to the LGCA. As it turns out, the expression
for the amplitude of the ¢ ~! tail in a 2D LGCA is equal
to Eq. (1) multiplied by a factor 1 —d, where the density
p for continuous fluids must be interpreted as 7d /v, the
number density per unit area for the FHP-III model
(seven velocity states per site, volume of the unit cell of
the triangular lattice vo=+/3/2). The factor 1 —d is a
consequence of the Fermi statistics and guarantees that
the state occupied by the tagged particle contains no
fluid particle. It should be stressed that the applicability
of Eq. (1) to the FHP model is not self-evident because
in the FHP model there exist unphysical hydrodynamic
modes (associated with the staggered momentum densi-

0.04 T T T T
A ]
B
-
*
N
=
D B s S 1
< D
S | i LT
~ E
>
A e s = = e T
k F
G
0.000 . ‘

0 100 200 300 400 500
time t

FIG. 2. In order to detect possible deviations from the ¢ ~!
decay in the VACEF of a tagged particle in a 2D LGCA at long
times, this figure shows #{v(0)-v(z))/{v?) as a function of time
t. The letters refer to the density: 4-G correspond to d =O0.1,
0.2, 0.3, 0.35, 0.4, 0.5, and 0.75. For some densities more than
one simulation result is plotted. Within the statistical accuracy
of the present calculations (the error bars have a length of 2
standard deviations) no systematic deviations from the ¢ ! de-
cay can be detected. However, the error estimate in Eq. (5) is
probably too conservative because a fit to the simulation data
shows that for all seven points with d = 0.3 the VACF decays
with an effective exponent 8> 1 (up to 3%).

ty, see Ref. 16). These modes can couple to the micro-
scopic stress tensor, thereby affecting the amplitude of
the long-time tail of the stress-stress autocorrelation
function. However, to leading order in 1/t the same
staggered modes do not couple to the tagged-particle
current.

In Fig. 3 we compare the simulation results for the
amplitude of the do with the predictions of mode-
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FIG. 3. Density dependence of the amplitude of the ¢ ~!
algebraic tail of the tagged-particle VACF. Points, computer
simulation results. Drawn curve, mode-coupling theory.
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coupling theory. As can be seen from the figure, the
mode-coupling predictions are very close to the simula-
tion results. The remaining discrepancy of a few percent
is comparable to that found by Kadanoff, McNamara,
and Zanetti.'®

Next, consider the behavior of (v(0)-v(¢)) for
t/to>1. Velocity correlations were studied for times up
to ¢ =500, which corresponds to values of ¢/¢o ranging
from 102 to over 103. In this time regime, which has
never before been studied numerically, we would expect
to observe a Int/t correction to the 1/¢ tail similar to the
one predicted by de Schepper and Ernst for the hard-
disk model.> The relative importance of these logarith-
mic corrections is grown linearly with the gas density in
continuous fluids. If we would assume that the expres-
sion for d; [see Eq. (2)] given in Ref. 3 also applies in
the case of a lattice gas, then we find the following densi-
ty dependence of the ratio d/d:

di/do=—dol(vo+ Do) 1+ (4vp) "1+ [8(vo+ &)1 ™1
=—0.247d , 4)

where ¢ is the bulk viscosity and plo= 1§ for p=0.° A
ratio d/dy of this magnitude should be easily observable
in the present simulations. However, as can be seen
from Fig. 2 there is no clear evidence for faster than ¢ !
decay at any density. In fact, a log-log fit to the long-
time tail of the VACF allows us to estimate the ratio
dy/dy as a function of density. If we assume a linear
density dependence of di/do, we can put the following
bounds on the amplitude of this term:

d/do=—0.02(3)d . (5)

The kinetic-theory estimate for continuous fluids exceeds
this value by 7 standard deviations. This suggests that
the expression for d/dy given in Ref. 3 does not apply to
lattice gases. It seems unlikely that the discrepancy is
due to the fact that the simulations do not extend to long
enough times. More likely, Eq. (4) is not correct for lat-
tice gases, because the density effects of the Fermi statis-
tics have not been accounted for and the staggered
momentum modes that do not contribute to dy are ex-
pected to affect d;. It should be added that even though
we compute (v(0)-v(¢)) for 102-10° mean free times,
we are still well removed from the asymptotic regime
where the correlation functions are expected to decay as
1/t(ne) 2.

At present, the lattice-gas equivalent of the prediction
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for di/dy given in Ref. 3 is still lacking. Clearly, such a
theoretical result is highly desirable, as it would allow us
to decide whether the suppression of significant correc-
tions to the ¢ ~! tail is peculiar to lattice gases or if it is
indicative of the behavior of 2D fluids in general.
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