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In this paper the crossover from "small" to "large" chaotic systems is studied. The behavior of the
largest Lyapunov exponent in a system of coupled chaotic maps shows that this crossover is remarkably
sharp, and allows us to define a coherence length beyond which the system is effectively large. Between
the coherent chaos of the small system and the incoherent chaos (turbulence) of the large one there is a
stable window starting at the linear instability point for the uniform chaotic state in which the lattice be-
comes effectively one dimensional. The scaling of the coherence length close to the onset of turbulence is
investigated and compared to recent predictions.

PACS numbers: 05.45.+b, 47.25.—c, 64.60.Fr

The study of coupled-map lattices' has become a
very fruitful way of building up intuition and knowledge
about extended dynamical systems —like hydrodynami-
cal turbulence or inhomogeneous chemical reactions—and testing and generalizing the methods used to de-
scribe low-dimensional chaotic systems in a context
where spatial degrees of freedom are important. Chaotic
motion in extended systems is typically incoherent or
"high dimensional. " If the system is large, enough
different parts become decorrelated and the dimension of
the "attractor" will presumably grow in proportion to
the volume of the system. Phrased differently: An ex-
tended dynamical system is characterized by a finite
coherence (or correlation) length such that points
separated by distances much larger than that are com-
pletely decorrelated.

The coherence length is thus a very important quanti-
ty, whose magnitude, relative to the system size, deter-
mines whether the system is "large" or "small"; and it is
of crucial importance to understand its dependence on
parameters and its relation to other characteristic
lengths in the system. The correlation length is usually
defined via the exponential decay of an equal time corre-
lation function (two-point function). It is, in general,

very hard numerically to obtain a nice exponential decay
in coupled-map systems. In one dimension one can han-
dle very large systems, but they "equilibrate" very slowly
due to the presence of almost frozen defects; ' in two (or
higher) dimensions the equilibration properties are much
better, but the size limitations become severe. For a
special class of one-dimensional coupled maps (linear
discontinuous) one has been able to see reasonable ex-
ponential decays in the correlation function. A more
practical method has been suggested recently in which
one computes the decay rate for the exponentially de-
creasing spatial power spectrum, although the physical
meaning of the characteristic length scale determined in

this way is not always clear.
In the following we shall look instead at systems of

different sizes to see how the characteristics of the dy-
namics change. In low-dimensional chaotic systems a
very useful quantity is the (largest) Lyapunov exponent
which characterizes the rate of exponential separation of
points in phase space that are initially very close. This
concept can be applied to extended dynamical systems
like partial differential equations or coupled-map lat-
tices, but very little is known about the dependence of
this quantity (or related quantities) on the size of the
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system, i.e., the crossover from small to large. We shall
see that this dependence allows us to pick out important
characteristic lengths related to the coherence of the sys-
tem.

We consider a standard diffusively coupled-map lat-
tice:' a two-dimensional cubic lattice indexed by (i,j)
where i,j=1,2, . . . , L. On each site we have a scalar
field u„(i,j ), where n is the discrete time, and we always
assume periodic boundary conditions in i and j. The dy-
namics are given by

u„+i(i,j) =(1 —e)f(u„(i,j))
+ 4 E g f(uII(l, j )),

nn i',j'
where (i',j') are nearest neighbors of (i,j) Th. e func-
tion f(x) is taken to be some nonlinear map that can
sustain chaotic motion, e.g. , the logistic map f(x)
=Rx(1 —x). The logistic map has a period-doubling
cascade with accumulation point R, =3.569945 6. . .
and for R, & R &4 the attractor is either chaotic or
periodic, but even in the periodic windows the periodic
attractor coexists with a chaotic repellor giving rise to
chaotic transients. For the coupled system, transients in-
crease rapidly with the system size L and even for
moderate sizes the periodic windows are never seen with
noisy initial conditions. '

Chaotic motion is characterized by a positive
Lyapunov exponent defined by '

A specific example is shown in Fig. 1, where the larg-
est Lyapunov exponent of the map (1) with
R =3.5732. . . ji.e. , ln [(R—R, )/R, ] = —7I and E =0.4 is
plotted against the lattice size L, which varies from 1 to
50. For each lattice, noisy initial conditions were used.
The first 5000 iterates were discarded and the next
N=10000 iterates were used to evaluate X. The uncer-
tainty was estimated by comparing to the value of X ob-
tained halfway (i.e., with %=5000)—it is of the order
of a few times the dot size in the figure.

For small lattices (L ~ 8 in the specific example) the
Lyapunov exponent is close (within 5/II) to the single-
map value 0.059. Between L=8 and L=9 it drops to a
value close to zero where it remains up to L=13. Be-
tween L =13 and 15 it rises to its "large-system" value;
all the way up to I.=50 it remains close (again within
5%) to X =0.030. A closer look at the motion reveals
that the lattice becomes absolutely flat for L ~ 8; i.e., the
chaotic motion of each map is completely in phase, al-
though the initial conditions were noisy (the differences
in X are numerical inaccuracy due to the finite waiting
times).

Between L =9 and L =12 the state is modulated in one
direction and flat in the other. It is easy to see that this
transition is simply determined by linear stability of the
uniform chaotic state. In the chaotic state very long
waves are unstable. A perturbation Boe' " of the flat

X,(q)nstate will grow as e ', where '
1

W —
1

lim —g ln~ f'(x;) ~,w- N i-o
k, (q) =Ap+1n

~
1 —@[1——,

' (cosq 1+cosq2) 1
~

—7Ip (i q) E. (3)
where x; =f(x; 1) and xp is the starting point of which
X is independent. For the coupled system (1) one can
similarly define Lyapunov exponents by looking at the
variation

du„+1(i,j ) = (1 —e)f'(u„(i,j))du„(i, j)
+ —,

' elf'(u„(i', j') )du„(i', j') .

For a lattice of size L one can, in principle, define L
Lyapunov exponents, such that the sum of the first i
characterizes the exponential growth or decay of an i-
dimensional hypervolume in phase space. Here we shall
mostly confine our attention to the 1argest one which de-
scribes the growth of distances analogously to the
single-map case. Numerically this (as well as the lower
exponents) can be found by standard techniques.

Such calculations were done on the system (1) in Ref.
11 and it was noted that the value of X for large lattices
is roughly proportional to that of the single map Xo
(around a factor of 2 smaller) and specifically scales
with the same exponent as R R,+. For a very small
lattice we expect, however, to find a value close to Xo,
and thus we might ask how the crossover takes place.
Does it show the characteristic length scales of the sys-
tem?
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FIG. 1. Size dependence of the largest Lyapunov exponent.
1n[(R —R, )/R, ] —7.0 and e 0.4.

Here kp is the Lyapunov exponent of the single map f
and the approximate expression is valid for small q. The
allowed wave vectors are of the form q =(2n/L)(n~, n2),
where n~ and n2 are integers. Thus the first wave vector
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q = (2x/L) (1,0) or q = (2rr/L ) (0, 1 ) becomes unstable at
system size L I determined by k, [q = (2rrI/L I,0) j =0
which for large L I means L i = x(&/&p) '

For the parameters corresponding to Fig. 1 we get
L~ =8.02 which means that L=9 is the first unstable
system. Strangely enough at first sight the system
responds to this instability by becoming stable —the van-
ishing Lyapunov exponent indicates nonchaotic, almost
periodic behavior. On further reflection this is perhaps
not so strange. Above L& the system can suddenly use
the spatial degrees of freedom (at least in one direction)
and thus it has much more phase space to search for
stable motion and can remain coherent by lowering the
Lyapunov exponent. Since the lattice is effectively one
dimensional in this range, these states are analogous to
the "pattern selection" found in Ref. 13.

At L =13 modulations in both directions appear. This
happens roughly at L =J2L I corresponding to
&&[q = (2x/L)(1, 1)1 =0, i.e. , the instability of the second
mode in the uniform state. Now the system begins to
have problems keeping its different parts together and
for increasing L the dynamics quickly approaches large-
system behavior with a new Lyapunov exponent
reAecting the fact that different parts are dephased. Al-
ready at L =L, =15 the value of k is indistinguishable
from its value at L=50 indicating that the incoherent
averaging responsible for its large-system value is now
effective. The lowering of the Lyapunov exponent com-

4.0

pared to the single map is caused by the existence of
both positive and negative slopes f(u). Continuity along
the lattice (enforced by the coupling) implies that be-
tween regions with positive slopes and regions with nega-
tive ones there must be regions where the displacement is
very small thus lowering the overall growth rate.

For other values of the parameter R we have found
similar behavior. There is a size L ~ at which the
Lyapunov exponent jumps down to a value close to zero.
At a later value L2, X starts moving up again and at L,
its value is indistinguishable from that of the infinite sys-
tem (extrapolating from L =50). In Fig. 2 we have
shown L~ and L, against R —R, in a log-log plot. We
have chosen Li as the smallest "stable" size and we have
chosen L, as the smallest L for which the difference be-
tween k(L) and the "infinite-system" value A, is less
than, say, 10%. For the highest values of L, (the top left
points) transients become very long and our data are
somewhat less accurate. ' For small L the staircase na-
ture of the plot due to the discreteness of L is evident.
The straight lines in Fig. 2 have slope —v, where
v =log2/21ogb =0.2249. . . (8 is Feigenbaum's con-
stant ) and are (approximately) the linear stability
thresholds for the uniform chaotic state for different
modes as marked on the lines. They are obtained from
(3) using the scaling behavior A.p = a(R —R, ) " with a
estimated from our data. It is seen that, very roughly, L,
is a factor of (slightly less than) 2 larger than LI and
that they seem to scale in the same way when R ap-
proaches R, :

L,—LI —(R —R, ) (4)

3.0-

The number of positive Lyapunov exponents is a rough
measure of the dimension (lower bound if the measure is
sufficiently smooth ' ). This number changes rapidly
around L, For the parameters of Fig. 1 it is zero be-
tween L ~

=9 and L =12. From 3 at L =13 it changes to
6 at L, =15 so indeed the system is quickly getting high
dimensional. Figure 3 shows the number of positive ex-
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FIG. 2. Scaling of LI (filled circles) and L, (empty circles).
Along the x axis is ln[(R —R, )/R, l and e is 0.4. The straight
lines have slope —log2/21ogb= —0.2249 and give the insta-
bility thresholds (in the uniform state) for wave vectors
q=(2n/L)(n~, n2), where (n~, n2) are indicated on each line.
Here the long-wavelength approximation in (5) is used togeth-
er with the scaling law (6). The full expression (5) would bend
down slightly to the right, but scale in the same way to the left.

p
p p p p

p I I I I I I I I I

0 I 2 3 4 5 6Q78 9 IO II 12

FIG. 3. The number of positive Lyapunov exponents as a
function of size for R 3.6353 [in[(R —R, )/R, ] —4.0j and

0.4. Here L, 7 as shown by the circle on the x axis.
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ponents as function of system size for a larger R (where
the relevant L values are smaller and computations
easier). Here L, =7 and we see a persistent growth in
the number of active modes. ' This means that we can
view L, as a coherence length: Systems larger than L,
are incoherent, consisting of several independent parts,
and thus eN'ectively large. Naively one might have taken
L~ as a coherence length, but that would be misleading.
At L~ the uniform state is lost, but coherence is still
maintained.

The scaling relation (4) is in agreement with numeri-
cal computations of the correlation length in a one-
dimensional chain of linear discontinuous maps of the
form f(x) =rx(modl). It also agrees with the scaling of
the decay rate of the exponential spatial power spec-
trum (although this quantity shows nonuniversal behav-
ior further away from criticality). It disagrees, however,
with numerical results " for the two-dimensional
coupled-map system (1) obtained by interpreting the
first zero of the correlation function as a measure of the
correlation length. Our later analysis has shown that it
is very difFicult numerically, at least with the sizes of lat-
tices that are available to us, to see an exponentially de-
creasing correlation function. The first zero is therefore
not very useful and can vary strongly due to local struc-
tures. Further the interval of R values studied in Ref. 11
was very short (due to the rapid rise of the measured
length scale), corresponding only to —6.15 ( ln [(R
—R, )/R, ] ( —4.8 in Fig. 2.

Some analytic work ' has been done to support the
scaling law (4). They are, however, based on the notion
that the state of the system is almost uniform; and thus
one is basically calculating Li. As seen from our results
the state close to L, is in no way close to being uniform
so a diA'erent approach seems to be required. One can
obtain an upper bound to the coherence length based on
the existence of a finite maximal speed, c, by which dis-
turbances can spread. Thus the coherence length g and
the largest Lyapunov exponent X should satisfy
g(constxck '. In models like (I) with only nearest-
neighbor coupling c cannot exceed unity, but in fact one
would expect c to depend on the Lyapunov exponent. '

Consider a small local perturbation duo(r) at r =ro and
time 0, and let us ask for the distribution du„(r) at time
n. This can be found from (2) which of course, in gen-
eral, is very hard to solve. If we approximate (2) by set-
ting all f'(u (i,j))=const=e [such as for the chaotic
map f(x) = rx (mod) 1] we find

Thus we get exponential amplification in any system of
coordinates moving with speed less than c,„, wherec,„=(Q, ) ' . This leads to the estimate
which again leads to (4) using the scaling relation for A, .
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