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Phase Diagram of the Frustrated Spin- 2 Heisenberg Antiferromagnet in Two Dimensions
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Using a Lanczos technique we study the frustrated spin- 2 Heisenberg model on square lattices of 16
and 20 sites. Frustration is introduced by an interaction along the diagonals of the plaquettes with cou-
pling J2~ 0. For large J2 we found that the ground state breaks (spontaneously) the lattice rotational
symmetry. For intermediate values of J2, the squares of order parameters associated with spin-Peierls
and "twisted" states have a peak while a similar quantity for a chiral state shows no interesting struc-
ture.

PACS numbers: 75.10.Jm, 74.65.+n, 75.40.Mg

The discovery of high-temperature superconductors in-
duced considerable work in the study of two-dimensional
(2D) spin systems. This has been mainly motivated by
Anderson's claim' that the physics of the new materials
is closely related to the existence of new non-Neel phases
of the 2D spin- 2 Heisenberg model. In fact it has been
shown that the Hubbard model with doping can be writ-
ten, under some approximations, as a Heisenberg model
with frustration. While for the unfrustrated case evi-
dence is accumulating that there is Neel order in the
ground state, not much is known when frustration is ex-
plicitly included in the model. Since Auctuations are
very strong in this problem, mean-field studies can only
suggest a tentative phase diagram and more powerful
techniques are needed for a reliable analysis.

In this Letter we study the spin- 2 Heisenberg model
with frustration introduced through an additional cou-
pling along the diagonal of the plaquettes of the lattice.
This model is defined as

H=J)QS;. S;+;+J2$S; S;+s,
1,C

and we will refer to it as the J~-J2 model. S; are spin- 2

operators located at sites i of a square lattice with

periodic boundary conditions. e ( =x,y) denote unit vec-

tors along the two directions while d (=x ~ y) represent
vectors along the diagonals of the plaquettes. Classical-

ly, the J~-J2 model presents two phases: For small J2
the ground state has Neel order, while for Jq/J~ )0.50
the system decouples into two Neel sublattices with an

energy independent of the angle between the correspond-
ing staggered magnetizations (thus the ground state is

highly degenerate). J2/J~ =0.50 is the classical transi-
tion point where in fact other states (having a uniform
but arbitrary spin twist) are also degenerate with the
ground state.

Recently the study of the quantum version of this
model was initiated with spin-wave techniques (large S)
showing that in a small region of parameter space the
staggered magnetization may be zero. Also, recently a
numerical study of the spin- 2 model was presented '

using a Lanczos method on a 4x4 lattice. In that
analysis it was found that for J2/J~ ~0.55 a singlet state
with momentum k=(0,0) was very close to the ground
state with a gap much smaller than the spin-wave gap in
the Neel phase (for the same finite lattice). In this
Letter we continue the analysis of the J~-J2 model clari-
fying the physical meaning of that near degeneracy of
the ground state as well as discussing other possible new

phases near the classical transition point. Using the
modified Lanczos method we have studied square lat-
tices with N=16 and 20 (N denotes the number of
sites) investigating the spectrum and mean values of
special operators in the ground state. Energies have
been obtained with a typical accuracy of 10 that pro-
duces errors in the squares of order parameters of 10

Our results are the following: In Fig. 1(a) we show
some selected energy levels (including the ground state)
for a 4X 4 lattice at J& =2.0 [actually there are other lev-

els above and in between those shown in Fig. 1(a)1. The
energies are per site. The ground state E+ is a singlet
with k=(0,0). It is even (+) under both a rotation of
the lattice in n/2 and a reflection along a vertical axis.
By inspection of the wave function we found that the
state E — [also singlet with k=(0,0)] difl'ers from the
ground state under a tr/2 lattice rotation, this excited
state having a quantum number —1 (odd) under that
operator (and still even under reflections). Esw~ and

Esw2 are spin-wave states (triplets) with k=(tt, tt) and
(O, n), (tr, O), respectively, while E~ is the first state of the
spectrum odd under reflections with k=(0,0). Eq have
k = (O, tr), (tr, O) and are singlets. The physical meaning
of these states will be discussed below. In Fig. 1(b) we
present our results for a 20-site lattice. While the behav-
ior of Es~j and Esw2 is qualitatively similar to Fig.
1(a), the E+ and E — levels cross at Jq= 1.17~0.01
(J~ =2.0) where E —becomes the ground state. The gap
between E —and E+ is remarkably small near and after
the crossing point. This nonuniform behavior of the
ground state for large J2 (i.e., even under rotations for
N=16 but odd for N=20) is likely to be a finite-size
eff'ect. Below, we follow the convention that mean values
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FIG. 2. Squares of order parameter, g,&, and M, associated
with collinear and Neel states, respectively, vs J2 (J| 2.0).
Solid (open) squares and triangles denote results for N 20
(N 16) as explained in the figure.
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FIG. l. (a) Some representative energy levels (per site) of
the %=16 lattice at Jl 2.0. E+ is the ground state, E — is
the first excited state odd under a ir/2 lattice rotation, Eswi,
Esw2 are spin waves, and Ep, Eg are excited states whose phys-
ical meaning is explained in the text. (b) Same as (a) but for
jV 20.

of operators are evaluated in the actual ground state tak-
ing into account the crossing levels. We explicitly
checked that our qualitative predictions are unchanged if
instead of the actual ground state for N=20 we consider
the state E+ in calculating expectation values.

Now we analyze the physical meaning of our results.
First we concentrate on the near degeneracy between E+
and E — for J2/Ji )0.55 where classically the system
decouples into two independent Neel-ordered sublattices.
However, for large but finite J2, thermal and/or quan-
tum fluctuations crucially alter this picture. The J&
term that couples the two sublattices cannot be neglect-

ed. The basic detail is that the coupling between the
fluctuations of each sublattice staggered magnetization is
maximum when they are parallel or antiparallel. Expli-
cit calculations at large S have sho~n that the infinite
degeneracy of the classical ground state is removed and
the system eAectively prefers to be locked in a state
where the magnetizations have a relative angle of 0 or z.
This results in dominant configurations having alternat-
ing rows (or columns) of spins up and down (that we will

call "strip" or collinear states) that are connected by a
lattice rotation of m/2. However, the tunneling between
them is through a high-energy barrier and thus exponen-
tially suppressed. The barrier diverges in the thermo-
dynamic limit and a spontaneous breakdown of the
discrete lattice rotational symmetry occurs.

Our results in Fig. 1 clearly support this picture,
confirming the validity of the spin-wave calculations
even for S 2 . E+ and E —correspond to the even and
odd combinations of the two collinear states with a split-
ting caused by tunneling in our finite system. Analyzing
the wave functions we found that indeed the classical
collinear states have relatively large coefticients. In the
collinear states there is a spin-wave mode in the "stag-
gered" direction. They correspond to the states Esw2 of
Fig. 1. Another way to check the existence of collinear
states is by using the order parameter

o;=s; (s, „-+s, „-
—s, „-

—s, „-). (2)

0; takes values +1 or —1 for the collinear states. It
vanishes for a classical Neel state. %'e have studied the
square of this order parameter, defined as g,&,

=((N 'g;0;) ), where the sum is over even sites. If a
collinearlike state is the ground state in the bulk limit
then g,t, should stay approximately constant with in-
creasing N. In Fig. 2 we show our results for g,~,. For
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completeness, we also present results for the square of
the staggered magnetization, defined as

' 2

~2 3 1
x yS+

N 1

g,~, is small for small J2 but with increasing J2 it
presents a sharp peak between 1.2 and 1.4 that does not
change much with the lattice size. This result gives sup-

port to a recent calculation' where the Ising-type criti-
cal temperature of this model was shown to have a max-
imum near the classical transition point. The abrupt
change in g,~, and M (and other observables presented
below) for N=20 is due to the crossing of levels in the
ground state, although using the state E+ instead, the
results look very similar. %'e have not attempted an ex-
trapolation to the bulk limit but from Fig. 2 it is clear
that g,~, is likely to remain finite in that limit for
Jq~ 1.2. Note that the existence of a maximum in g,~, is
correlated with the minimum in the

~
E+ —E —

~ gap.
Now we analyze the region around J2/J|=0.5. Here

there are many candidates for the ground state. For ex-
ample, recently Read and Sachdev" have shown in a
1/M expansion for the SU(M) antiferromagnet that if a
non-Neel phase exists in the Heisenberg model then it
may exhibit spin-Peierls order. In this state the spins are
coupled in short-range singlets forming columns (we will

refer to it as the "column" state). Such a configuration
breaks the lattice rotational symmetry, it is fourfold de-
generate, and its existence can be tested using the com-
plex order parameter, '

0;"'=ri(i)S; (S; „-+iS; „-
—S; „-

—iS; „-),

where i are even sites and tl(i) =+1 ( —1) if both i„and
i~ are even (odd). This operator takes the values 1, i,
—1, and —i for the four column states and it vanishes
for Neel or collinear states. We studied numerically g„~

=(~N 'g;0;"'
~

) (Fig. 3). For the 4x4 lattice it has
a peak at J2/Jl ——0.5-0.55 indicating that there is an
enhancement of the stability of this state in that region.
For the 20-site lattice g„~ still has a peak but of 1ower in-
tensity. Then, we cannot show convincingly the stability
of the column state in the bulk limit. ' Note that the
doubly degenerate state Es [singlets with k = (0,~),
(x,0)l of Fig. 1(a) may be associated with the two addi-
tional levels that would become degenerate with E+ and
E when W~ ~ if the column state is the ground state.

Another possibility for the ground state in the inter-
mediate region is a "twisted" or helicoidal state which
can be obtained from the Neel state by applying a uni-
form twist Q along some direction (e.g. , the x axis).
Classically, these states are all degenerate at Jz/J& =0.5
[including Q =0 (Neel state) and Q =x (collinear
states)] and only at that point do they form the ground
state. However, if a new term is added to the Hamiltoni-
an that couples spins at a distance of two lattice spacings
(along both axis) with coupling constant J3, then there is
a finite region around Jq/J| =0.5 where the twisted state
is the ground state. ' Although in our model J3 0 it
may be generated dynamically so it is important to ana-
lyze the possible existence of such a twisted order. For
S=

2 these states can be characterized by the vector or-
der parameter, ' V;=Sl&&(S;+„-+S;+„-). In Fig. 4 we
show g, =((N 'giV;) ). In the intermediate region it
has a peak that increases its intensity from N=16 to 20.
An extrapolation to the bulk limit is dificult but it is
clear that this state is enhanced near J2/J& = 0.5.

Finally, we present results for chiral order. Recently
it has been pointed out' that a nonzero expectation
value for the operator 0 "=S;.(Si+„-&&S;+„-) implies
chiral-symmetry breaking (and also parity and time-
reversal symmetry breaking). We have measured
the square of the chiral order parameter, g,h

=((N 'gt0 ") ) (assuming a uniform chiral state)

.08
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FIG. 3. Z„~ (square of the column-state order parameter) vs

J2 (Jl 2 0).
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FIG. 4. z, and Z, h (square of the twisted and chiral order
parameters, respectively) vs J2 (J) =2.0).
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(Fig. 4). There is no indication of an enhancement of
this type of order since g,h is very flat for both %=16
and 20. In Fig. 1(a) we also studied the state Et which
has the lowest energy in the subspace of k=(0,0) and
odd under re[]ection. ' The gap i Ep —E+ —

i is much
larger than the spin-wave and the i E+ E ——

i gaps. So
in the spectrum there are no indications of a parity-
symmetry-breaking ground state either.

Summarizing, our conclusions from a numerical study
of small lattices are the following: (i) For large J2 we

found strong evidence that the lattice rotational symme-
try is spontaneously broken. This eA'ect appears very
clearly when studying both the spectrum and the order
parameter and is in good agreement with analytic calcu-
lations. ' The symmetry breaking seems to be max-
imum for J2/Ji =0.6-0.7 and perhaps a discontinuous
transition separates this phase from the others. (ii) In
the intermediate region we observed indications of an
enhancement of both spin-Peierls and twisted order since
both g„i and g& have a peak. Bigger lattices are needed
to conclusively show the stability of these states. With
Lanczos techniques it may be possible in the near future
to study %=32 which is the next lattice size with all the
symmetries of the bulk limit. It is interesting to analyze
the possible coexistence of column and twisted order. It
is also important to extend these results, including the
parameter J3 that makes the twisted state stable (classi-
cally) on a finite region. ' ' (iii) No evidence of chiral
order in this Ji-J2 model has been found. Of course our
lattices may be too small for such a state to be energeti-
cally favored (we know very little about typical length
scales for this state). Also it would be interesting to
know if the chiral order is expected to be uniform (as
tested here) or if it presents additional spatial structure.
(iv) Finally, note that for all values of J2/Ji there seems
to be some order parameter corresponding to a sym-
metry-breaking state that shows some enhancement.
Then there is little room in the Ji-J2 model for
resonating-valence-bond (disordered) phases. ' Again
this situation may change when including a J3 coupling
or doping (holes).

After completing this work we received a paper'
where the column state is claimed to be stable near
J2/J i
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