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It is shown in a simple Hubbard model that through a mechanism called g pairing one can construct
many eigenstates of the Hamiltonian possessing OA-diagonal iong-range order. The intrapair distance is
small. It is shown that these eigenstates are metastable and possess an energy gap.
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Since the discovery of high-temperature superconduc-
tivity' in 1986-1987 there have been many proposals
for the theoretical mechanism for such phenomena.
None has been generally accepted. Most proposals con-
cern some kind of Hubbard model, which unfortunately
is difFicult to solve except in one dimension.

In this paper we show that for the simplest Hubbard
model in three dimensions (also in one or two dimen-
sions), many eigenfunctions of the Hamiltonian can be
explicitly written down. Of particular interest is the fact
that these eigenfunctions possess off-diagonal long-range
order (ODLRO), the property of a dynamical system
that is essential for the phenomena of superconductivity
and superAuidity. This is a rather subtle long-range or-
der, especially for fermions, and no previous models of
fermions in dimensions higher than one has been proven
to have eigenstates with ODLRO. The usual BCS wave
function does have ODLRO via the mechanism of
Cooper pairs, but it is not an eigenstate of a Hamiltoni-
an system with a local potential energy.

The mechanism essential for the eigenfunctions of the
present paper is a g-pairing mechanism which seems to
be peculiar to lattice models, and is absent in any contin-
uum model.

For the attractive case these eigenfunctions are shown
to be metastable at low temperatures. They possess
ODLRO, and thus are superconducting.

(I) ri pairing Consid. e—r a three-dimensional Hub-
bard model on a periodic L xL x L lattice where L is even
(e) 0):

H=T+ V,

given by

ay=(L) 'l'ga, exp( —ik r), (4)

where

k =2tr/L (three-dimensional integer) (mod2n) . (5)

We choose the fermion operators so that

[al„alt]p =b(k —k'), etc. ,

but

[al„bl, ] = [al„bl, ] =O. (6)

The kinetic energy T of Eq. (2) is trivially diff'erent
from the kinetic energy in the usual Hubbard model in
the appearance of the term 6, which is inserted here to
make T a positive operator. This insertion makes it pos-
sible to compare with such concepts in the continuum
problem as particles, collisions, bound states, etc. No
physical conclusion is altered by this insertion.

We shall show that many eigenstates of the Hamil-
tonian H can be explicitly written down with the aid of
an operator g defined as

ri=gat, b -1„ =tr( , tr, tr)tr.
k

(7)

Notice that this definition is only meaningful when L is
even, because otherwise k and x —k would not be simul-
taneously possible k values. Using (4), we also have

ri=ge "'a,b, .

T = eg (6 —2 cosk„—2 cosks —2 cosk, )
It is easy to prove

qtT —Tg~ = —12eg~, (9)
X (al, ay+ bltbg),

V=2W+a ta,b tb

(2)

(3)

where a, and b, are coordinate-space annihilation opera-
tors for spin-up and spin-down electrons, respectively,
and r is a three-dimensional integral coordinate variable
that designates the L x L xL lattices sites. The annihila-
tion operators a~ and bg are momentum-space operators

by going into the representation where all ai, ap and all
be~bi, are simultaneously diagonal. The basic kets in this
representation will be denoted by I n) Now ta. ke
(n'I

I n) of both sides of (9). Since T is diagonal in this
representation, (9) becomes

&n'
I ri In&[&n I

T
I

n& —&n'
I T I

n'&]

12e(n I
Gt

I n) . (9 )
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@~V—Vqt = —28 q~ (io)

Now (7) shows that (n'(rit( n) is nonvanishing if and
only if (

n') is obtainable from I n) by creating, onto the
state I n), a pair of a and b's with momenta k and x —k.
If it is so obtainable, then

&n(T(n& —&n'I T In'& = —12e.

Thus we have proved (9'). Hence also (9). Similarly we
can prove

to define

yN =p'(rip) (vac&.

It is easy to prove

t!$V—Vrt( = —2Wrip.

Thus

Vy~ =2NR'y~ .

(2i)

(22)

P =g (ait,ai, +bttbi, ) . (i2)

Both P and k are defined (mod2n). It is easy to prove,
in the same way we proved (9), that

gtP —Pg~ = —xg~. (i 3)

Using (11) and (13) we can prove the following
theorem:

Theorem 1.—If &!i is a simultaneous eigenstate of H
and of P,

Hy=E, y, Py=P, y,

then a new simultaneous eigenstate p' of H and of P,

HP' = (Et + 12e+ 2 W) P', PP' = (Pt,+ tt) P',

(i4)

(is)
is generated by p'= rite, provided titbit a0. Notice that p'

has one more a particle and one more b particle than p.
(2) Eigenstate ylv. —Starting from the vacuum state

I vac), by repeated use of the above theorem, we generate
the state

by going into the representation where all arear and all
b~tb, are simultaneously diagonal. Adding (9) and (10)
we obtain

ritH Hrtf = ——(12e+2W)rt

The total momenta operator P is

(ba Ip Iba&= e' ' ' (res)N(M —N)
M(M —i)

where

(23)

It remains to prove &y~ ( T I @JAN& =12Ne. Using rtc
=gqaqb ~ we find from (20) that y~ is a sum of
states, each of which is N Cooper pairs of a and b. For
each such state &0 there is a corresponding state pl in y~
in which each Cooper pair's momenta is changed from k
and —k to tt —k and —(tt —k). Now po and p~ have
equal weights in yN. Also po and pi have kinetic ener-
gies ~hose arithmetic mean is 12Ne. Hence we have
verified (ylv( T I @JAN) =12Ne, and have thus proved that
y~ is not the ground state.

It should be observed that the above does not prove
that the true ground state has Cooper pairing.

The state yt is a bound pair (ab), bound in the sense
that the average distance between a and b is zero, as is
evident from (8). Its energy is 12e+2W which can be
positive. The existence of such states is a peculiarity of
the lattice model, which is absent in the many-particle
problem in continuum models.

(3) yz has ODLRO. —The eigenstate yz defined by
(16) is of a standard form for a state with ODLRO (cf.
Appendix A of Ref. 3). The off-diagonal element of the
reduced density matrix p2 for this pure state y~ can be
shown to be yea, b, b,a,y~, which is readily evaluated
from (8) and (16):

y~ =p(g')"
I vac), (i6) M =I. =number of states a . (24)

which is a simultaneous eigenstate of H and P:

Hy~ =N(12e+2W) yv, Py~ =Ntty~ .

The constant p is a normalization factor, which is equal
to

P =[N!(M—N)!/M!l '1 M =L

Is the state y~ the ground state for the system with N
particles a and N particles b? The answer is no, because
we can construct another state y~ which has the same
expectation value for H as y~, but which is not an eigen-
state. To construct ttl~ we use the Cooper-pairing opera-
tor

Hg=Etg, P$=N~g. (2s)

We can construct many such states g with the operators

State y~ has ODLRO because the right-hand side of
(23) does not approach zero as r —s increases. It was
shown in Ref. 3 that with such ODLRO the system
should exhibit magnetic-Aux quantization with Aux unit
ch/2e, the factor of 2 arising from the total charge of the
pair (ab).

We observed that the size of the pair (ab) is zero lat-
tice unit, much smaller than the usual Cooper pair.

(4) State near yjv What .—are the eigenstates of H
near y~? We confine ourselves to those states g that
have the same total momenta as y~.

rtc =Xai,b i =pa, b, —
k r

(i9) ik. a —ix r
ga Z e akb~ —k =Z e ar+abr .

k
(26)
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Notice

(27)

[q., g„] =0.
It is easy to show that

(T 12')—i rt
t

i vac& =0 (all a),
V i rtti vac) =0 if a&0.

(2g)

(29)

(30)

Thus rt i vac) is an eigenstate of 0 with eigenvalue 12@,
if a~0. It is obviously also an eigenstate of P with ei-
genvalue a. Using Theorem 1 we thus find a set of
eigenstates g

where (2+
i vac) describes a state with two particles a and

two particles b. Because of Theorem I, it is sufficient for
(35) to satisfy (25) that (j i vac) is a simultaneous eigen-
state of 0 and P, with the eigenvalue of P equal to
0(mod2tr).

Now (j i vac) is a four-particle state. Unfortunately it
is difFicult to find explicit eigenstates for such four-
particle problems. However, when the lattice is large,
the energy spectrum of this four-particle state has a con-
tinuum starting at energy equal to 0+, with possibly
bound states below zero. Thus there are many states
(35) with energy

Eg=(N —2)(12e+2W)+(0+) .

g=(rt()" 'rit
i
vac) (aw0) (31) Thus

where gr i
vac& describes a state with one particle a and

one particle b:
r

g ckk akbk (33)

We shall now prove that all states (32) that satisfy (25)
are either y~ or a linear superposition of the degenerate
states (31). y~ will be called the zero-pair state. A
linear superposition of (31) will be called a one-pair
state. Both are eigenstates of the Hamiltonian, with the
energy of one-pair states highe~ than that of the zero-
pair state by —28'& 0.

To prove our statement we observe that for the state
(32) to have total momentum Nx, as implied by (25),
(1 i vac) must have momentum m. Thus in (33) the sum-
mation is over all k+k'+a only,

4l W ck&kba —k
, k

Making a Fourier expansion of ck shows that gi is a
linear sum of the rt, 's of (26). Thus

&=(rid) ' gd, rl, tlvac&. (34)
, a

The term on the right-hand side with a =0 is the zero-
pair state. The other terms together are a one-pair state.
Since these two have different energies, (34) must be ei
ther exclusively the former, or exclusively the latter,
proving our statement.

We have so far found L —1 one-pair states (31)
above the zero-pair state y&, with an energy gap of—28'. It is natural to look for two-pair states in a gen-
eralization of (32):

g= (q$) 'gjivac), (35)

satisfying (25) with energy E~ =12cN+ 2W(N 1). —
These states are degenerate, and their energy is different
from that of y~ by —28'.

From this point on we shall assume 8'&0. Now
states (31) are of the form

(32)

E&—(energy of y~) = —24m —4W, (36)

V=2W+ar+par+pbrbr ~

we can still obtain g pairing with g~ replacing the opera-
tor rt =rip of the previous sections. (b) In the model

showing that there are many two-particle states below
the zero-particle state, if 24' ) —48.

We digress here to ask the following: Since one-pair
states are above the zero-pair state by —28'in energy,
why are the two-pair states not above the zero-pair state
by —48, but instead by —24m —48 & —48'? The
answer to this question lies in the facts already presented
above, that (11 i vac) has momenta P = tr while gj i vac)
has momenta P=0(mod2x). These are peculiar to the
lattice model and are not present for continuum models.

(53 Metastability of y~.—While the zero-pair state
y~ is not the ground state, we shall argue that it is meta-
stable.

Starting from y~, adiabatic heat input and output
could lead to two-pair states that have 1ower energies
than y~, hence to instability. But to reach such instabil-
ity the system has to tunnel through the one-pair states
(31) which have an energy higher than that of y~ by the
gap —28' & 0.

The physical picture is as follows: Without distur-
bance the zero-pair state has ODLRO and is time in-
dependent. When adiabatic heat input and output are
applied, a pair of excitations described by one-pair states
may occur, requiring an energy of —28. In each region
of space the one-pair excitation is still an eigenstate and
does not cause instability. But when two pairs of excita-
tions collide, a two-pair state may be reached with ener-
gy lower than y~ causing instability. At low tempera-
tures, much lower than —28' the one-pair excitations
are rare and collisions are infrequent. Thus y~ is meta-
stable.

(6) Variations of the theme —(a) It is clear t.hat if the
potential energy V is such that it is equal to 28' for two
particles at a distance P, and zero otherwise,
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defined in section (1), for 8'(0, the potential energy is
attractive for a and b particles on the same site. But one
can easily construct a model where strong repulsion
prevents a and b to occupy the same site. For example,
consider a simple cubic lattice of A atoms interlaced
with a simple cubic lattice, of the same size, of B atoms
such that each A atom has one and only one nearest-
neighbor B atom. Assume that electrons a can only at-
tach themselves to 8 atoms and electrons b only to B
atoms. Assume that if nearest-neighbor A-B atoms have
simultaneously an a electron attached to A and a b elec-
tron attached to B, then there is a contribution of 28' to
the potential energy of the system. This model is
mathematically the same as the model discussed in the
present paper. (c) Writing the energy per particle with
momentum k in (2) as e(k), so that

T =g e(k)(al, aq+bl, bl, ),
we find that the essential property of e(k) that makes

possible q pairing is

e(k)+e(~ —k) =independent of k. (37)
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This equation is satisfied for any e(k) equal to a summa-
tion of cos(mk„), cos(mk~), and cos(mk, ), where m =0
or odd. If the lattice is not a simple cubic lattice, ap-
propriate generatizations of (37) can be written down
easily.
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