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Quantum Magnetotransport of a Periodically Modulated Two-Dimensional Electron Gas
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A quantum-mechanical theory is developed for the recently discovered magnetoresistance oscillations
in a periodically and weakly modulated two-dimensional electron gas. The bandwidth of the
modulation-broadened Landau levels at the Fermi energy oscillates with magnetic field and gives rise to
magnetoresistance oscillations parallel (p„„) and perpendicular (pyy) to the modulation. Diffusion
current contributions, proportional to the square of the bandwidth, dominate p; collisional ones, which
are large for small bandwidths, dominate pyy. pyy and p„„oscillate out ofphase as observed. New oscil-
lations in the Hall resistance, the cyclotron resonance position, and the linewidth are predicted.

PACS numbers: 73.40.Sx, 73.50.Dn

Over the last two decades' the transport properties of
a two-dimensional electron gas (2DEG) have been stud-
ied intensively by many research groups. Because of the
singular nature of the density of states (DOS) of a
2DEG in a magnetic field well defined oscillations are
found in the thermodynamic quantities, such as specific
heat, magnetization, magnetocapacitance, etc. , and in
the resistance, such as Shubnikov-de Haas (SdH) oscil-
lations, magnetophonon oscillations, etc. , but also novel
phenomena such as the quantum Hall effect (QHE) and
the fractional quantum Hall effect (FQHE) have been
observed. Recently a weak 1D modulation (taken along
the x direction) of a high-mobility 2DEG has been real-
ized which leads to novel oscillations in the magne-
toresistance. These oscillations are connected to the
commensurability between the modulation period a and
the diameter of the cyclotron orbit 2R, =2(2trn, ) 'l l at
the Fermi energy, with l = (I't /e8) 'I the magnetic
length and n, the electron density. These oscillations
have the following features: (1) They are periodic in 1/8
like the SdH oscillations. (2) The periodicity depends on

the electron density like jn, while the SdH have a n,
dependence. (3) The amplitude of these oscillations has
almost no temperature dependence in contrast with that
of the SdH oscillations. (4) They show up most clearly
at small magnetic fields, because at higher fields they are
obscured by the SdH oscillations. (5) Weiss et al. also
found oscillations in pyy which are much weaker in am-
plitude and are out of phase with the oscillations in p
(6) Also, modulations in the magnetocapacitance oscilla-
tions were observed.

DiA'erent theoretical models have been given which are
able to explain the oscillations in p . Gerhardts, Weiss,
and von Klitzing presented a quantum-mechanical cal-
culation based on a Kubo-type formula. Theoretically
no noticeable oscillations in pyy and RH were obtained.
Winkler, Kotthaus, and Ploog calculated the diff'usive

contribution to p„„ in the high-temperature and classical

(large Landau-level index) limit. This approach leads to
a simple expression for the oscillations which agrees very
well with the experimental results in the very small mag-
netic field limit, but for higher magnetic fields the
theoretical result did not recover the SdH oscillations.
Beenakker presented an alternative explanation for the
oscillations in p„„on the basis of a classical picture, in
which a resonance between the periodic cyclotron orbit
motion and the induced (by the periodic potential) oscil-
latory motion of the center of the orbit leads to oscilla-
tions in p „. Because the theory is classical the transi-
tion to SdH oscillations in p for larger magnetic field is
not obtained. No oscillations are found in the other
components of the resistivity tensor indicating that the
weak oscillations in pyy have a purely quantum-
mechanical origin. At present no explanation is avail-
able for the antiphase oscillations in pyy.

In the Letter we demonstrate that a quantum Boltz-
mann equation, derived in the framework of Kubo's
linear-response formalism, accounts well for all the ob-
servations mentioned above. The antiphase oscillations
in pyy are explained and ne~ oscillations in the Hal resis-
tance and the cyclotron resonance position and linewidth
are predicted.

We consider a two-dimensional electron gas, in the
(x,y) plane, in the presence of a magnetic field 8 along
the z axis, and periodically modulated in the x direction
by the potential U(x) =Vocos(Itx), with IC =2tr/a, a be-
ing the modulation period. To evaluate the resistivity
tensor p„, (p, v=x,y) we will use the components a„,of
the conductivity tensor in the standard expression: p„„

cryy/S& pyy oxx/S, and py„= —ayx/S, where S
2 2 2 2.

Qxxoyy cr&yoyx with S= cr„y =n, e /8 in the experi-
ments under consideration.

We consider a many-body system described by the
Hamiltonian H=HD+Ht R'F(t), where Ho is the un-
perturbed part, Ht is a binary-type interaction (e.g. , be-
tween electrons and impurities or phonons), and
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—R F(t) is the interaction of the system with the exter-
nal field F(t). For conductivity problems the external
field is given yb F(t) = —eE(t), where E(t) is the elec-

e and r; istric efi ld, R=g;r, —e is the electron charge, an r; is
the position operator of electron i. In the representation

d+ ndh h 0 is diagonal the density operator p =p +p"in w ic pis
has a diagonal part p and a nondiagona par p
weak electric fields (i.e., for linear responses) and weak
scattering potentials the diagonal part of the current
density reads 7

(~ ) Tr( J ) I g [ S«(„«)~~»+( (1)P P p

«=(» r &),where 0 is the volume of the system, a„=
v«=ci„=(

~
r'„) g), with

~ g) being the one-particle eigen-
state of Hp with eigenvalue E«, and (n«)& is the average
occupancy of the state ~ (n & is the collision in-

tegral of the quantum o zBoltzmann equation for scattering
m ofbetween different or like particles. The second term o

E . (1) is the usual diffusive current; the first term oEq. 1 ist eusua i
E . (1), absent in semiclassical treatmen s, pts re resentsq. , a
collisional contributions to the current andnd is called
"collisional" current. The latter is only current for
transport through localized states, .g.,s e, Landau states,
or for hopping con uh nduction in disordered materials. In
such a situation e ith d'ffusion contribution vanishes iden-
tically.

dc conductivityIf only diffusive current is present, the dc co
~ 7(a)is given by

g f«(1 f«) r(E«) v„—v, ,
2

(2)~P V

rovided that the scattering (between different pent articles)

f =(n ), is the Fermi-is elastic or quasielastic. Here, &~= n» zq is

, P= 1/k T and r(E«) is the relaxationDirac function, p= g, a
If th problem is such that there is only co isiona

current, the dc conductivity takes the simple form
@=V)7(a)

2
2gf, (I f, )W„( « «)—, —

2A g'
is the transition rate between the stateswhere 8'~~ is e

n -t e formulaand
~

g'). This is the well-known hopping- yp
for transport in the presence o gof a ma netic field. Con-
duction occurs by transitions through spatially separate

The nondiagonal part of the current density leads to
the dc conductivity

a" =2 g f (1 f«)(&~ v„~ &'&-
PV

I0
P(F« —F«)

1 e (4)x(g'(v, ( g

The total conductivity is then given by the sum cr„,
=a +o.„" The above formulas have been successfully
applied to many situations: ' pp ga

' ' ' ho in conduction and
uantum Hall effect,magnetophonon resonances, q

Aharonov-Bohm effect, etc.
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FIG. 1. The bandwidth at the Fermi energy, and the correc-
and and the Hall resis-tions to the magnetoresistances p„„an pyy

tance, as functions o t e magf th gnetic field. The 1D modulation
of the 2DEG is along the x direction.

To apply Eqs. (2)-(4) to the present problem we need
the eigenfunctions and eigenva ues o eues of the one-electron
Hamiltonian

Hp-(2m') '(p —eA) 2+ U(x),
where p is the momentum operator, A is the vector po-

s

the Landau gauge A (O,Bx,O) are given by p„x —xp

harmonic-oscillator functions centered at xp I ky, n is
the Landau-level index, and Ly is the engt o e s

t e nth leveltern in the y direction. The energy o t e
E = (n+ 2 )A «p, is degenerate with respect to the waveEn n

vector ky.
~ ~I th resence of the 1D modulation the exact eigen-n t e presen

states are i cu o od'ffi lt t obtain. In the experimental syste
under study the amplitude of the modulation is sma an

1 t th correction to the energy leve s by
the un erturbedfirst-order perturbation theory using the unpertur e

wave functions given above. This gives

E» k =(rl+ 2 )AN + Vpcos(Kxp)e L„u—Q/2 (6)
nkvd 2 C

1pwhere u K l /2 and L»(u) is Laguerre polynomial.
We see that the modulation lifts the ky degeneracy of
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the unperturbed Landau levels which are broadened into
bands with a bandwidth that oscillates with band index n

and magnetic field. What will be important is the band-
width at the Fermi energy which is illustrated in Fig. l.
Its steplike character is due to the fact that the electron
is taken to be in a definite Landau level n =EF/hrp,
—1/2.

When the modulation is absent the diffusive contribu-
tion to the current vanishes identically because v~ and v~~

are zero. The only current contribution left for transport
along the electric field (p =v) is the collisional one, as
given by Eq. (3). However, in the presence of the modu-
lation the carriers acquire a mean velocity in the y direc-
tion

tl&n, k» 2 Vp . 2k@
sin u ue "~ L„(u), (7)

h Bky hK K

whereas v ~ is again zero. Thus a„„have only a collision-
al contribution while o~~ will have two contributions, a
collisional and a diffusive. This already implies that the
resistivity tensor is asymmetric.

For the evaluation of formulas (2)-(4) we assume
that the electrons are scattered elastically by randomly
distributed impurities. This is a very good approxima-
tion for the experimental temperatures T & 10 K. To
evaluate hp„„we have to calculate the correction to the
conductivity h, a~~ due to the modulation which is domi-

anted by a diffusive component. To leading order in Vp

we found

v

e 2z 2 l

a

g [s..( )]'—
n-p ~E E E„

(8)

with ~ an energy-independent relaxation time which we

have approximated by r =pm /e, where p is the mobili-

ty of the 2DEG. It is evident from Eq. (8) that ho~~ and

thus hp „are proportional to the square of the band-
width at the Fermi energy. This is a generalization of
the result of Ref. 4 to arbitrary temperature which is the
reason why Eq. (8) also contains the SdH oscillations.
The result of Eq. (8) leads to Ap„„which is shown in

Fig. 1; we took p=1.3&10 cm /Vs, n, 3.16x10"
cm, and a 1D modulation with period a =3820 A and

amplitude Vp=7. 5 K=0.65 meV which corresponds to
the experimental condition of Ref. 2. For T =4.2 K and
8 &0.6 T the SdH oscillations are not yet visible in

hp . For T=4.2 K the SdH oscillations appear for
8&0.6 T. When T &4.2 K they are also present for
8 & 0.6 T. No attempt has been made to fit the theoreti-
cal result to the experimental one because this has been
done already in Refs. 3-6 and our result is in essence the
same as that of these references. The position of the
minima are accurately described by the condition 2R, /a
=n+3/4.

The magnetoresistance along the modulation pyy= a„„/cr„~ is proportional to the conductivity cr„which
has only collisional contributions and can be evaluated
from Eq. (4),

Ny Up
2 f a/I2g (2n+1) „dk» pf„q (1 f„z ),—(9)

where Nz is the impurity density with Up =2me /ek, the
impurity potential in Fourier space in the limit k, »q; k,
is the screening wave vector and e is the dielectric con-
stant. In the absence of modulation Eq. (9) gives the
standard two-dimensional result. In the following we
will calculate the correction due to the modulation: hpyy
=p~~(Vp) —p~~(Vp=O), which is shown as the third
curve in Fig. 1. The conduction along the modulation
occurs through hopping between the Landau states. This
type of conduction is smallest (and thus also p~~) when
the density of states at the Fermi level is smallest, which
is the case when the bandwidth at the Fermi level is larg-
est. This explains why the modulations in pyy are out of
phase with those of p„„. The fact that the oscillations in

pyy are much weaker is also evident because they are
only a consequence of small perturbations on the co1-
lisional current which is also present without modulation.
This is diff'erent from p „where the modulation opens up
an extra conduction mechanism. For 8 )0.3 T the rap-
id oscillations in Fig. 1 are SdH oscillations whose am-
plitude is now modulated by these new oscillations. In-
creasing the temperature (but such that T ( 10 K) will
not influence the amplitude of the oscillations for 8 & 0.3
T but will wash out the rapid SdH oscillations visible for
8 &0.3 T.

The Hall conductivity is evaluated from Eq. (4) along
the lines of Ref. 7(b). The result is

++I& fn, k» fn+&k»,
[I +X,„cos(2uky/K) ] 2 (10)

where X„Vp/hco, e " L„+'~ (u). In the absence of the modulation A,„=O, f„q =f„, and a=L„; th—en for strong mag-
netic fields Eq. (10) leads to the integral quantum Hall effect with the assumption that the Fermi level lies in a re-
gion of localized states between two successive Landau levels. In the experiments with modulation the magnetic field is
very weak, X„WO, and the term [I+A,„cos(2uk~/K)] hro„expressing the energy difference E~ E~ between successive—
Landau levels, oscillates with magnetic field and leads to oscillations in a~„. hR~ =R~(Vp) —R~(Vp=0) versus the
magnetic field is shown by the last curve of Fig. 1. The oscillations are in phase with those of p„and are small since
they result from the term k„cos(2uk~/K) which is the difference of the bandwidths of two neighboring Landau levels.
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FIG. 2. The derivative of the Hall resistance with respect to
the magnetic field for the same physical system as in Fig. 1.
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FIG. 3. The percentage shift in the cyclotron frequency and
the percentage increase of the cyclotron linewidth as functions
of the magnetic field.

P( )="E'(h, )'" g(.+1) t""dk, ""
h 2 a -o "o &,k, (A, ,k

—Aro) +I

If we take the derivative of the Hall resistance with
respect to the magnetic field as illustrated in Fig. 2, the
oscillations should be much more visible.

Previously Chaplik" predicted that the cyclotron resonance of electrons in a lateral superlattice in a strong magnetic
field perpendicular to the growth axis exhibits a two-peak structure due to the singular nature of the density of states at
the band edges. Up to now the experiments' have shown only a broadening of the linewidth. The present system un-

der study is the weak modulation limit of the system studied in Ref. 11. We found the following expression for the cy-
clotron resonance power spectrum:

with

h„k =hco, [1+X„cos(2trk~l /a)],
and E the strength of the oscillating electric field with
frequency co. For the broadening a typical value of I =2
K was used, but we have checked that the numerical
conclusions do not depend on the value of I. The nu-
merical results for the percentage change in the position
of the cyclotron resonance frequency and the linewidth
are shown in Fig. 3. The position of the cyclotron reso-
nance frequency oscillates around the unperturbed value;
it reaches a maximum at maximum bandwidth and its
minimum at zero bandwidth. The width of the cyclotron
resonance peak oscillates in phase with the oscillations of

In conclusion, we have presented a full quantum-
mechanical calculation of the resistivity tensor for a
2DEG in a weak 1D periodic potential. All available ex-
perimental data can be explained by our model. An in-
terpretation of the antiphase oscillations in p~~ is given.
New oscillations in the Hall resistance, the cyclotron res-
onance frequency, and the cyclotron resonance linewidth
are predicted. We find numerically that the amplitude
of the oscillations increases quadratically with the ampli-
tude of the modulation potential Vp. Furthermore,
lowering the electron density also increases the ampli-
tude of the oscillations. The reason is that the Fermi en-

ergy is lowered and the electrons are thus located much
closer to the bottom of the modulation potential.
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