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Photon-Single-Phonon Coupling at Polar Crystal Surfaces
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We calculate the direct coupling among long-wavelength photons and single short-wavelength phonons
at the surface of semi-infinite polar crystals. This coupling is allowed due to the loss of momentum con-
servation at interfaces. The ir reflectance shows deviations of order 10 from the Fresnel spectrum,
with a rich structure related to the detailed ionic motions in regions of the phonon dispersion relations
commonly regarded as inaccessible to light. The reflectance depends on polarization and crystal orienta-
tion, suggesting a new ir optical-anisotropy spectroscopy which is expected to be surface sensitive.
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The energy- and quasimomentum-conservation laws
within a periodic lattice impose severe restrictions on the
coupling among photons and phonons. Since the wave-
length of photons is typically much larger than intera-
tomic distances, only phonons with wave vectors in a
small region near the center of the Brillouin zone k=0
can participate in one-phonon scattering. ' Long-wave-
length photons and short-wavelength phonons may still
couple in the presence of spatial inhomogeneities such as
impurities or within disordered materials for which
phonons with all possible k's contribute to the photon
scattering. In order to optically probe short-wavelength
phonons in crystalline materials artificial periodicities
have been introduced. As a result of Brillouin-zone fold-
ing, Raman scattering by small-k phonons in a superlat-
tice yields kinematical information on large-k phonons of
the homogeneous crystal.

The most simple inhomogeneity is the presence of a
single interface. Near a low-index flat surface, a crystal
losses translational symmetry in one direction, but re-
tains two-dimensional periodicity. Hence, long-wave-
length light may interact with phonons whose wave-
length is smaller by several orders of magnitude, al-
though quasimomentum along the surface remains a
conserved quantity. The strength of this interaction is
sensitive to the microscopic atomic motions which give
rise to the surface-induced phonon-photon coupling. The
spectra dependent on this coupling is expected to yield
information on the surface dynamics.

The purpose of the present Letter is the calculation of
one such spectra. Using a simple microscopic model for
the lattice dynamics of a semi-infinite cubic crystal, and
including the interaction between the atomic displace-
ments and the radiation Geld, we calculate the far-
infrared reflectance R of a polar semiconductor. The re-
sults deviate from the reflectance R as calculated with
the Fresnel theory in terms of its macroscopic dielectric
response e. The origin of this discrepancy is the
surface-induced coupling among the incident light and
phonons, some of which have wave vectors at the edge of

the Brillouin zone and have been commonly regarded as
optically inaccessible. The corrections to the Fresnel for-
mulas depend on the relative orientation between the po-
larization vector and the principal directions of the sur-
face, giving rise to an anisotropy spectra of order—10, which may be observed using differential-
reflectance techniques.

Similar anisotropy spectra have been calculated and
measured recently for visible and near-ultraviolet light.
They have sho~n a remarkable sensitivity to the geome-
trical and the chemical state of the surface, to the posi-
tion and orientation of adsorbates, ' to surface states, "
to surface-state-induced electric fields, ' and to the spa-
tial distribution of the electronic polarizability. ' There-
fore, optical anisotropy is a very useful surface probe,
with the added benefit that light does not require a vacu-
um to propagate, so it can even by employed in hostile
environments. In this paper we explore the anisotropy
spectra in the far infrared, where the polarization is
determined by the atomic motions rather than electronic
transitions.

We begin our calculation with the equations of
motions for the atoms, which we write as

I

mar0 uia =eaE (Ria) + Z Uiajp(ujp uia) ~

JP

where m and u;, are the mass and the displacement
from the equilibrium position R; of the atom a in the
ith primitive cell of the crystal, and U; ~p

=K; ~p

+e,T;,~pep/e is the total interaction matrix between
atoms ia and jP. This includes a short-range mechanical
term K; ~~ and a screened long-range unretarded
Coulomb interaction proportional to the dipolar tensor
T; ip =V; V;, ( R; —

R~p ~

' and to the effective charges e,
and ep=—~ e . Here, e is the contribution of the
valence electrons to the dielectric function.

We also included in Eq. (1) an interaction with the re-
tarded transverse field E radiated by the atoms which
vibrate with frequency m within a medium with response

This field obeys Maxwell's equations and therefore
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satisfies the wave equation

V'E'(r)+. q'E'(r)
4n—q 'P gepu~pb(r —Rjp),

jp
'" (2)

Here

where q =co/c, b(r) is the Dirac delta function, and the
operator P is the transverse projector.

In summary, our model consists of rigid ions immersed
in a dielectric medium, interacting through short-range
mechanical forces as well as long-range Coulomb and ra-
diation fields. For simplicity, Eq. (I) is written within
the harmonic approximation and incorporates only two-
body mechanical forces, although realistic calculations
require many-body forces. ' Photon extinction' and
nonharmonic phonon scattering are accounted for by
adding a damping term to K; jp.

Within the bulk, the equations of motion have Bloch-
type solutions' u; yk e' " for which Eq. (1) be-
comes

I co —QU, „(0) B,p+U, p(k)+U p(k) ykp=O.
P y

(3)

p/anes has a very fast exponential decay. '

The solution of Eq. (1) for a bulk-truncated semi-
infinite crystal can be written as the superposition'
u; gk rlkyk, e' ", which satisfies identically the
equations of motion for all but the % planes closer to the
surface of a semi-infinite one. Therefore the infinite sys-
tem of equations for u;, in (1) can be simplified to the
finite system

Z Z Uiaj p(pka e Ykpe ) rlk
k, jp

U=g U p(u -u ) =0 (6)
iP

for the unknown rlk, where the sum g is performed
only over the unoccupied sites jP of the corresponding
infinite crystal. There is one independent equation for i
in each of the first N occupied planes and for each value
of a. The system of equations (6) has a straightforward
interpretation: The real semi-infinite crystal can be ex-
tended to an artificial infinite crystal by adding fictitious
atoms. The correct superposition of the normal modes
of this infinite crystal is that in which the fictitious atoms
do not produce any (unretarded) force whatsoever on the
real atoms. We close the system of equations by noticing
that the transverse field at the surface,

(k) gU
—ik (R„—Rjp (4)

E (0) +ilk 2 z e P yk =E'+E",k 2 2 a ka

is the Fourier transform of the nonretarded interaction
tensor, and

URp(k)= 'nq n e.ep(l-kk)
p2 q2~

is the interaction between sublattices a and P through
the radiation field when q (( I/a; a is the lattice parame-
ter and n is the lattice site density.

Equation (3) would usually be solved for co given a
Bloch vector k within the first Brillouin zone, yielding
the bulk phonon-polariton-photon dispersion relations. '

However, we are interested in the excitation of these nor-
mal modes at surfaces upon which monochromatic light
is incident at a given angle 8. Therefore we give real
values to co and to the parallel projection ki =Q, and we
solve Eq. (3) for the normal component k& =k, . We as-
sumed that the crystal occupies the z & 0 region. In this
case Eq. (3) has many solutions: a long-wavelength po-
lariton mode, some short-wavelength propagating bulk
phonons, and many complex k, 's which correspond to
evanescent phonons. The latter are not truly bulk modes
since they cannot be normalized in an infinite crystal,
but they can be excited in finite or semi-infinite systems.
The total number of solutions depends linearly on the
number N of lattice planes after which the interaction
U; J~ is neglected. We remark that although the
Coulomb interaction between atoms has an infinite
range, in the present problem it can be planewise
summed exactly, and the Coulomb interaction between

is a superposition of the incident field E' plus the field
radiated by all the atoms,

E"=J d r'G(O, r')q e,P gu; b'(r' —R;,),
ia

where G(r, r') is the electromagnetic Green's function
within a dielectric medium with response e . Finally, we
solve for gI„we calculate E', and we combine the contri-
butions of the immersed ions to the reflection amplitude
r; =E'/E' with the contributions from the valence-
electron polarization r to obtain the reflectance R
=

I (r +r;)/(1+r r;) I .
In Fig. 1 we show the normalized difi'erence hR/R be-

tween the far-infrared normal-incidence reflectance
R(co) of the (110) face of a model zinc-blende crystal
and Fresnel refiectance R (co) =

I (1 —ve)/(1+ Je) I .
We assumed mechanical interactions given by a
nearest-neighbor Born model adjusted to the sound ve-
locities, high-frequency dielectric constant, eA'ective

charge, and ionic masses of a GaAs crystal. ' In the
figure we introduced co|=(neo/p)'~ =9.2x10' s ' as
a convenient unit of frequency, where p is the reduced
mass and eo is the electron charge.

Figure 1 shows a very rich structure for the diA'erence
between the ir reflectance calculated with our model and
the Fresnel calculation. Furthermore, this spectrum
divers when the polarization of light is along the bond
chains, (110) or x direction, from the spectrum when the
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FIG. 1. Normal-incidence differential reflectance AR/R as a
function of frequency co for light shining on a model (110)
GaAs crystal. The upper left panel corresponds to light polar-
ized along the (110) direction, the lower left panel to the (001)
direction, and the right panel to the anisotropy spectrum.

light is polarized along the perpendicular (001) or y
direction. Therefore, by subtracting both spectra which
could be done experimentally using differential-reflec-
tance techniques, we eliminate all the contributions of
the bulk to the reflected light and we obtain a large,
surface-induced ir anisotropy signal. Similar anisotropy
measurements have already been performed successfully
in the visible and uv region "' and have proved to be
a very useful tool for the study of surfaces.

In order to understand the structure of our results, in

Fig. 2 we show the phonon dispersion relations along the
(110) direction as calculated with the present model.
There are acoustical and optical transverse modes (TA
and TO) polarized along the x direction and coupled
transverse-longitudinal (long elliptic) modes which oscil-
late in the y-z plane (labeled IA, IO, IIA, and IIO).
Near the longitudinal frequency ro (I ) the Fresnel
reflectance has a sharp dip which approaches zero, yield-
ing peaks in hR/R which can be seen in Fig. 1 for both x
and y polarizations. There are also peaks near the trans-
verse frequency co (I ) where the wave vectors of trans-
verse phonons and those of photons approach each other,
and therefore momentum conservation need not be
violated to get photon-phonon coupling.

The remaining features of Fig. 1 are due to phonons
near the edge 4' of the 1D Brillouin zone k, =rr/d (d is
the interplane distance). We discuss them here going
from lower to higher frequencies. First, we notice that
not all phonon branches contribute to the diAerence
spectra. There is no peak associated to the x-polarized
TA phonon for which each crystalline plane acquires a
very small dipole moment. Similarly, the IA(A') phonon
cannot couple to normally incident light since its polar-
ization is longitudinal. On the other hand, there are
features for y-polarized light when the branches IIA and
IIO arrive at point X. For these, only one atom oscillates
yielding a dipole along the y direction.

FIG. 2. Phonon dispersion relations for propagation along
the (110) direction. The modes labeled T are transverse and
polarized along the (110)direction, and those labeled I (II) are
polarized along (001) at I (X) and along (110) at A' (I ). Also
shown are the longitudinal and transverse frequencies m and
AP

The most remarkable peak is that coming from the IO
mode, since its polarization at X is longitudinal and
therefore it cannot couple directly to light. However, an
indirect coupling to y-polarized light through evanescent
long elliptical phon ons is allowed since there is no
y~ —y reflection symmetry in the zinc-blende lattice.
Finally, the TO I.honon has a large dipole moment and
gives rise to a peak for x polarization. Since the TO
dispersion relation is always above the IO dispersion re-
lation, the last two peaks diA'er slightly in frequency,
originating a derivativelike structure in the anisotropy
spectrum.

Similar calculations for (001) A and 8 surfaces and
for diA'erent crystals yield ir anisotropies of the same or-
der of magnitude as that for (110) GaAs. A full account
of these results will be presented elsewhere.

In summary, we have developed a microscopic theory
to calculate the phonon-photon coupling at the surface of
polar crystals and its contribution to the ir reflectance
spectra. We illustrated the theory by applying it to the
anisotropy spectra of a model semi-infinite GaAs crystal.
We predicted deviations from the classical Fresnel
reflectance which should be observable in diAerential-
reflectance experiments. The normal-incidence reflec-
tance anisotropy spectrum shows a remarkable structure.
For instance, we found peaks related to the excitation of
both acoustical and optical, and both transverse and lon-
gitudinal phonons.

There are previous calculations performed within elas-
ticity theory and some experimental observations of the
coupling between phonons and electromagnetic fields at
piezoelectric crystal surfaces. In comparison to those
results, our microscopic calculations suggest a purely op-
tical observation of that coupling and they predict much
larger resonant structures which are related to the pho-
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non band structure and the microscopic atomic motions
near the surface. Therefore the ir anisotropy spectra
should be quite sensitive to the surface structure. Our
theory also predicts a photon-phonon coupling in cen-
trosymmetric crystals, and we expect similar results in
some faces of homopolar crystals when account is taken
of charge transfers near the surface.

We are grateful to Ruben G. Barrera for his useful
comments on the manuscript and to Rafael Barrio for
stimulating discussions.
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