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The effect of an energetic ion population on the nonlinear stability of a tearing mode of single helicity
is determined using kinetic theory. A dynamical equation is derived for the magnetic-island width. It is
shown that the island growth can be suppressed in a tokamak when the energetic-ion-density profile
peaks just outside the rational surface. Effects due to resistive interchanges and bootstrap currents are

included in the model.

PACS numbers: 52.35.Py, 52.55.Fa

Resistive tearing instabilities are believed to play an
important role in disruptions as well as the confinement
properties of tokamak plasmas. The first analytic treat-
ment of the nonlinear tearing mode was given by Ruther-
ford,! who showed that the island width grows linearly in
time when the width of the island exceeds that of the
linear tearing layer. The driving force for the instability
is the magnetic free energy, which is measured by A’ in
tearing-mode theory.?

Previous work has demonstrated that the Rutherford
growth, though slower than the linear instability, is rath-
er robust. Kinetic effects® or diamagnetic drifts*® do
not influence this nonlinear growth. Bootstrap currents
provide another source of free energy which enhances is-
land growth.”® Resistive interchange effects also modify
the evolution equation of the magnetic island.® It has
been suggested that by using external helical coils,'®
magnetic perturbations,'! or radio-frequency currents, '
it may be possible to suppress island growth.

In this work, we examine the effect of a population of
energetic ions on the nonlinear stability of the single-
helicity m = 2 tearing mode. We neglect the magnetic
trapping of the energetic ions; this is valid if the hot ions
are introduced via parallel neutral-beam injection. We
show that the effect of the energetic ions on the non-
linear stability of the mode depends crucially on the local
ion-density profile which can be chosen to make the is-
land width much smaller than predicted by a Rutherford
analysis.!> We include effects due to interchange stabili-
ty and bootstrap currents.

The calculation is done in toroidal geometry; however,

to understand the underlying physics of the calculation,
we first give a heuristic interpretation of the results in
slab geometry. Consider the growth of a magnetic island
at the rational surface x =0. The sheared equilibrium
magnetic field can be written B=B¢Z+ B, (x/L,)y,
where X and § are unit vectors, L, is the local shear
length, and By is a constant magnetic field in the Z direc-
tion. If a coherent, symmetry-breaking perturbation B,
=bhpsin(ky)X is imposed, islands of half-width w =2
x (boLs/kB,) 172 form along the x =0 line. This is shown
in Fig. 1 which represents the projection of the magnetic
field in the x-y plane.

The guiding-center motion of an energetic ion is given
by v=uv,b+v,, where b=B/B, B= I|B|, and v;=I[(}
+v2/2)/Q;)1bxVInB is the magnetic drift velocity. If
we assume that B=B(x) and B'> 0 (where the prime
denotes derivative), the drift velocity is predominantly in
the y direction. If the drift velocity is added to the
field-aligned velocity of the equilibrium field, the null
line of the velocity component vy, is shifted with respect
to the null line of B, by an amount

xx=—[(wf+v1/2)/Q;v)1BoLs/B,Lg , (1

where Lg=(dInB/dx)~!. Note that the sign of v
determines whether the null line of v, is above or below
x=0. In the presence of the perturbation B,, the spatial
contours of the hot-ion velocity field show islands analo-
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FIG. 1.
plane.

The projection of the magnetic field in the x-y
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FIG. 2. The projection of the guiding-center velocity field
for vy=v-b>0 and vy <O0.
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gous to the magnetic islands of Fig. 1. This is represent-
ed in Fig. 2, in which we make the assumption |x« |
> w, where w is the island width. The condition | x4 |
> w defines the domain of validity for the calculation;
we will see that this condition is not difficult to satisfy.
Rapid transport of the hot ions along their guiding-
center trajectories causes the hot-ion density to be uni-
form along these trajectories. Hence, the contours in
Fig. 2 represent constant-density contours for the hot
ions.

If untrapped energetic ions have a net fluid velocity,
they produce an electrical current. The plasma electrons
tend to follow the ions in order to cancel this current;
however, because the electrons scatter into the trapping
loss cone at a faster rate than the ions, a net current,
which flows in the same direction as the ion flow, is ob-
tained. This is essentially the physical process responsi-
ble for current drive using neutral beams. !4 13

The local influence of the energetic ions is described in
Fig. 3. If the inequality |x«| >w holds, the effect of
the perturbing magnetic field on the constant-density
contours near x =0 is to deform the contours slightly
from horizontal lines. We now consider the effect of a
hot-ion density gradient. If n,'> 0, there are more ions
at the top of Fig. 3 than at the bottom. First, consider
the particles with vy, > 0. The density gradient causes
more ions with v; > 0 to be at the X point of the island
than at the O point, because the contour running through
the X point lies above the contour running through the O
point. This spatial dependence of the ion density intro-
duces a spatial dependence in the net parallel electrical
current. This current induces a magnetic field which re-
duces the perturbing field. The argument for the ions
with v <0 follows analogously. For nj >0, there are
more ions with v <O at the O point than at the X point.
This spatial dependence also induces a magnetic field
that is stabilizing. If the density gradient, or the direc-
tion of the magnetic drift (which depends only on B') is
reversed, the induced field from the energetic ions
enhances the perturbation. Note that this stabilizing
effect is independent of the direction of motion of the en-
ergetic ions, and depends only on the sign of n;B’.

We remark that this effect has little influence on the

FIG. 3. The interaction of the energetic ions and the mag-
netic island for |x«| >w. The solid lines are the magnetic
field lines, with X’s representing constant-density contours for
ions with vy > 0 and O’s representing constant-density contours
for ions with vy <O ions.

linear growth of the tearing mode. The extent to which
this effect is important depends on the amount of defor-
mation of the constant-density contours, which is propor-
tional to the size of the perturbation. For island sizes
smaller than the tearing-layer width, the tearing mode
should grow essentially at the rate given by linear theory.

We now provide details of the calculation in toroidal
geometry. The magnetic field in toroidal geometry is
represented by the flux coordinates @, a, and {, where ®
is the poloidal-flux function, ¢ is the toroidal angle, and
a=60—1{/qo is the helical angle resonant with the surface
® =y, with g =go. Near the rational surface, we con-
sider a magnetic perturbation with a single harmonic.
The magnetic-flux function in the vicinity of the island
is written w=g¢x%/2qo— A(t)cosa, where q§=dq/d®
evaluated at the rational surface, x =® —®g, and A4 (z) is
a time-dependent amplitude. The half-width w of the is-
land is related to the amplitude 4 by the equation w =2
x (goA/q$) /2. The magnetic field is written as B =gV®
XVa—V{xVy, where the first term represents the large
toroidal field.

An asymptotic analysis of the perturbed Ampere’s law
in the single-harmonic approximation yields a dynamical
equation for the island. As in Rutherford’s analysis, the
matching condition between the island region and the ex-
terior solution is obtained by integrating the appropriate
harmonic across the tearing layer. The matching condi-
tion is given by

[0 '

g ¢qo *° da cosa =
———Aw=] g P——J, 2)
16v27Rq0 f“l 27 (y+cosa)'? '

where y=y/A, g®®=|V®|2, and A =fhd{/2n. The pa-
rameter A’ is the discontinuity in the logarithmic deriva-
tive of the exterior vector potential. A’ is obtained from
the exterior region, and will be presumed known for the
purpose of our analysis.

The analysis for the inner region consists of computing
the parallel-current profile which is then used in Eq. (2).
The parallel current is obtained from the drift-kinetic
equation for each species in the vicinity of the island. As
in Ref. 7, we assume that the motion of an electron is
collisionless as it circles the major radius, but is collision-
al around the island. The quantity A=v.gR/v, is used
as a small parameter; here, v, is the electron-ion collision
frequency, R is the major radius, and v, is the electron
thermal velocity [v, =(27/m.) 1. The island orbit fre-
quency is w;~(w/a)(gR/v,) and we order w/a~A>
The solution for the hot-ion response is obtained from
the drift-kinetic equation in two steps. We first impose
the ordering | xx | ~w, and solve the drift-kinetic equa-
tion; thereafter, we introduce the subsidiary ordering w
< | xx |, as in Fig. 2. The electrostatic part of the elec-
tric field is assumed to be of the same order as the elec-
tromagnetic contribution, so that e¢/T.~@/¢~A> Fi-
nally, we need to order the hot-ion density and energy
with respect to the thermal electrons. We take T./ep
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~A2? np/n~A2? and vy/v,~A, where €5, ny, and vy, rep-
resent the energy, density, and velocity of the energetic
ions. These orderings enable us to keep track of several
important, competing physical effects. However, the
physical picture described earlier in this paper is not sen-
sitively dependent on all the specific orderings.

The drift-kinetic equation for the hot ions is now writ-
ten as

(vi/qR) (g d¢fn — lyv*. oD+ (c/q) o, f1]

+ev||E||a(f;,=C(fh)+S, (3)
where
[Q,P] anQ 0,P — 0aP 8,,Q ,
v*=(q6/2g0) (x —x%)?>— A(t)cosa+p,
xx =(y1+v1/201)q0B;80InB/q6Q;, B;=B-V{,

Ey=(1/gR){—q 8.0+ [y,0]1+(q/c)(8A/dt)cosa} ,
doInB is evaluated at the rational surface and averaged
over the torodial angle, p is the 8-dependent part of vB,/
Q;(p=0), and ¢ is the electrostatic potential. The expli-
cit time dependence of the distribution function is ig-
nored since the ions execute many toroidal orbits before
the magnetic topology changes. The first two terms ac-
count for the field-aligned and the magnetic drift veloci-
ties of the energetic ions, whereas the third term repre-
sents the Ex B drift velocity. The form of the collision
operator C(f3) or the source function S is not very im-
portant for what follows, but they can be specialized for
the case of neutral-beam injection.'® The ion collision
frequency is ordered according to vi~A*v,, so that
VigR /vy ~A*.

The hot-ion distribution function is now expanded in a
perturbation series in A%, f, =X,A?"f}. To leading or-
der, we find f2=7%. To next order in A% we find f¥
=£2(y*), where y* =q{(x —x4)*/2qo— Acosa. This
explains why the contours of Fig. 2 were described as
constant-density contours. To determine the velocity
dependence of f;?, we take Eq. (3) to order A% and get

((gR/vDICUN+SDs=0, 4)
where the operator
fda é/aqle*
Sda(1/307™)
defines the drift-surface average.
The quantity of interest is the electrical current gen-
erated by the hot-ion distribution near x=0. We now

impose the subsidiary ordering | x| > w, so that near
x =0 we can make the expansion

ST ) =f(x=0)
+(goAcosal/qoxs)dfn(x=0)/8(x — x4) .

The first term essentially gives the exterior density distri-
bution evaluated at the rational surface. We approxi-
mate the derivative of f, as the density-profile gradient
at ®=a,. The hot-ion distribution then takes the form

SR=n, (D) V(v)+qoni (Do) Acosa V(v)/qoxs, (5)

(Q)* =
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where the function ¥ (v) is found from Eq. (4) with the
averaging done over constant-® surfaces and satisfies the
normalization condition fdvV(v)=1.

The electrical current from the hot ions near x =0 can
now be computed from Eq. (5); we get

Jun =fev||f;, dV%en},((Po)fvnV(V)dV

enj, (Do) Q;k,Acosa
B;dq; InB ’

where k, =fdvV(v)v#/(w?+v2/2) is a number close to
unity. The first term represents the equilibrium parallel
current due to the energetic ions. This term will not
affect island dynamics. The second term gives the cur-
rent described earlier in Fig. 3, and has an important
effect on the island.

To solve for the electron motion, the drift-kinetic
equation is written as

i/gR)(qdcf — Ly, f1+[pBe /1) +(c/q) 0,11
—ev..E||66f=Co(f)+C;,(f), 7)

where py=v,/Q,.. The operator Cy which represents col-
lisions with the background plasma is taken to be a
Lorentz operator, given by Co(f) =(v&/B)d, (A S),
where A=v1/Bv? £=0(1—AB)"?, o=sgnv,, and v
=v,(v,/v)3. The hot-ion collision operator Cj is written
Cr(f) =—vup-vm,d.fn,/2n, where u, is the hot-ion
fluid velocity.

The electron distribution is now written as a perturba-
tion series in A, f =3, f,,A™ The solution of Eq. (7) to
the first four orders gives fo=/fou (v), f1=f1(¥), f2
=fam, and f3=pB;8¢fo+g3, where gz=g3 and the
subscript M denotes a Maxwellian distribution. After
taking the toroidal average of Eq. (7) to fourth order in
A, we obtain

g3=1{Q/qRv)(—ly,f2]1+eqRE  fo/T)
+ B¢ 80 fo/ Qe — 2uinfolvBovI(L) ,

where T(A\) = [} dA Bo/2| E| for A <A, and is zero for
A>%: e =1/Bo(1+¢€)], € is the inverse aspect ratio,
and By is the magnetic field at the axis. The first two
terms represent Ohm’s law for the island, the third term
represents the contribution to the island bootstrap cur-
rent, and the last term expresses the electron response to
the hot-ion current. Integrating this distribution in ve-
locity space, we obtain the leading-order current due to
the electrons,

(6)

CTB;

jlle=0'n __T‘[V/,f2]+E-|| _146'\/; c')q,n
eqR

—(1—1.46Ve)ju , ®)

where o, =(4.5n0e%/vem.)(1 —2.1/€) is the conduct-
ivity modified to include trapped-electron effects.
Trapped-particle effects also produce the bootstrap cur-
rent and the net current due to energetic ions. The elec-
tron density profile, which is needed to compute the is-
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land bootstrap current, is determined from the condition
that particle flux is constant.””? This gives 9,n=go
xn'(®g)/qowl;, where n' is the equilibrium density
profile and

I, =fda[(x+cosa)/2] /2.

Equations (6) and (8) are added together to yield the
total island current. The electrostatic part of the electric
field can be associated with resistive-interchange effects.
By using the parallel-current constraint, VJ, =—V-J
in a fluid theory, an island current proportional to the
resistive-interchange criterion E+F (Ref. 17) can be
found.® The solution to the parallel-current constraint
yields the solution j, = (w)— fdIV-J,, where [ is the
coordinate along a field line, with the Ohmic current
satisfying the condition {jon) = (o,/Rc)(dA/dt){cosa).

The island current is given by

on dA a4+ (E+F)cg®™ g6 90 ()= %)

"= Re “ar Rwli  qo
¢B:q0 op enp AQk,
46\/’80 (x)+1.46/¢ ;d¢lB<0sa)
)
where
(py =42 P/Boy
fda(l/aolll)

The first term is the island Spitzer current modified by
trapped-particle effects. This term gives the Rutherford
result. The island bootstrap current results from the in-
teraction of the banana orbits with the island’s pressure
profile. The last term is new, and is due to the energetic
ions.

Substituting Eq. (9) into Eq. (2), we can obtain a
dynamical equation for the magnetic-island half-width.
This equation is

L adv - Nw+—Q- (10)
N dt
where

M =1/0n, ko=c’g*®/4x,
N =1.46Vek,w}ndolnny/dndeInB ,

0=0.75(E + F)c?g®* —0.5Vep'R*c?q0/q} ,

with w§h=4nnhe2/m;. The term Q contains the effects
due to resistive-interchange instability and the bootstrap
current. The bootstrap current is destabilizing for p’
<0, while F +F determines the stability of the inter-
change mode. The new result of this analysis is the term
Nw which enters Eq. (10) and strongly influences the
nonlinear stability of the tearing mode. As mentioned,
this term is stabilizing if sgn(n;B')>0. For A'>0
discharges, it is possible to control the island width by
tailoring the hot-ion density profile. The saturated island

half-width is given by
ws =koA'/2N + [(koA'/2N)2+Q/N1V2. (11)

Equation (10) is only valid if the inequality w < | x4 |
holds. If the island half-width exceeds | x« |, the hot-ion
term no longer scales with the island size, and the island
grows at the Rutherford rate. The distance | x« | scales
as eqovn/Q;; for 40-keV protons in a 1-T magnetic field
(with e~ %, go~2), | x4 | =0.8 cm. To guarantee that
the island saturates at w; < | x4 |, the energetic-ion pa-
rameters must satisfy the inequality

vin@Z/Ly @; > 0.1Vec? | VO | A'/Lsk, ,

where Ly '=(nj/n,)|V®| and L,"'=(g¢/q0)|V®]|.
For A'~5/a, Ly~a (a==20 cm), this condition is sat-
isfied for (vyn/Q;Ly)n,/(10'2 cm ~3) 2 1/3. In particu-
lar, the latter condition is satisfied for 40-keV protons in
a 1-T field if n,~10'2 cm ~3 and L, <6 cm. Thus, our
analysis suggests that it is possible to suppress the m =2,
n=1 island in tokamaks by having the energetic-ion-
density profile peak just outside the g =2 surface. The
energy requirements for the scheme are quite modest; for
the parameters given the required neutral-beam energy
is approximately 5 kJ which is a small fraction of the en-
ergy expended either in Ohmic or neutral-beam heating.
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