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Four-Body Calculation of dd = dd and dd = p H Tensor Analyzing Powers
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Four-body integral equations are used to calculate dd dd and dd p H amplitudes using a single-
term separable nucleon-nucleon potential in channels 'So and Si - Dl. First-order perturbation theory
is used to include in the four-body kernel the contribution of d-wave two- and three-nucleon channel
components that result from the tensor force. Cross sections and analyzing powers are calculated using
all positive- and negative-parity four-body amplitudes with total angular momentum J~ 4. Comparison
with data is presented.

PACS numbers: 25.10.+s, 24.70.+s, 25.45.De, 25,45.6h

In a recent work, ' thereafter named I, a four-body
calculation of n H n H, p He~p He, dd~p H,
and dd dd amplitudes was performed using Alt,
Grassberger, and Sandhas (AGS) equations in the form
that the (2)+(2) subamplitudes are treated exactly by
convolution. This work clearly confirmed the earlier in-
dications by Tjon that p-wave three-nucleon subampli-
tudes cannot be left out from the four-nucleon kernel, if
agreement with data is to be achieved. The eftect is par-
ticularly strong in p He elastic cross sections, but it is
also noticeable in dd~p H and dd~ dd. In I a
single-term separable potential in channels 'So and
S~- D~ is used between pairs, but the triplet d-wave

channel component of the %N t matrix is neglected,
leading to the "too" approximation. Therefore three-
nucleon channel spin s is conserved, together with
particle-pair relative orbital angular momentum l. The
four-nucleon equations one solve take into account con-
tributions from s= 2 and —,

' as well as l=0 and 1. One
additional approximation involves the neglect of terms in
the four-body kernel where two l =1 three-nucleon states
are coupled, leading again to the conservation of four-
nucleon channel spin S and relative orbital angular
momentum L between two-body clusters of (3)+1 or
(2)+(2) type. The results that were obtained for p He

p He cross sections showed an excellent agreement
with data, but for dd p He a persistent discrepancy
around 90 in the center of mass remained unexplained.

To solve this problem we attempt for the first time to
include the tensor components of the NN force in a
scattering calculation. This has already been done suc-
cessfully for the ground state of He and excited 0+ en-
ergies, using different one-term separable Yamaguchi
potentials in channels 'So and S ~

- D ~. There we in-
cluded only the 2

+ three-nucleon subamplitude that is
shown to be responsible, together with all (2)+(2) sub-
amplitudes, for 99.99% of the ground-state energy. Nev-
ertheless, as mentioned in I, in a scattering calculation
one needs at least all three-nucleon subamplitudes with
channel spin s 2 or 2 and l=O or 1. In the presence
of the three two-nucleon channels that are consistent
with the NN interaction chosen above, the three-nucleon
subamplitudes of interest have spin and parity j

, and —,
' +, and isospin i; the corresponding

three-nucleon channels are shown in Table I for i = —,'.
The resulting number of four-nucleon channels depends
on the total angular momentum J, parity P, and isospin
I=O and rises from seven (J =0+) to seventeen
(~'=2+)

Given the large number of four-nucleon channels, the
underlying subcluster structure, and the need to repre-
sent accurately all (3)+1 subamplitudes in a separable
form to obtain converged four-nucleon amplitudes, one
quickly exceeds the capabilities of present-day computers
such as the VAX 8550 or the Cray XMP 48 in terms of
memory. Therefore, as a first step, we calculate the con-
tribution of the tensor components in the four-nucleon
kernel in first-order perturbation theory.

As shown in Ref. 5 the exact four-nucleon kernel in-
volves the calculation of the driving term % shown di-
agrammatically in Fig. 1, which may be written as

The first term 8 is the Born term which involves the ex-

TABLE I. Three-nucleon channels for different jP states
and i & . A singlet (triplet) pair is denoted by v=1 (v=2).
A singlet pair carries orbital angular momentum l =0 while a
triplet pair carries l 0 or 2.

jp
1 +
2
1 +
2
1 +
2
1

2
1

2
1

2
3 +
2
3 +
2
3 +
2
3 +
2
3
2
3
2
3
2
3
2
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FIG. 1. Driving term for 3+1 3+1 amplitudes.

change of an interacting pair of nucleons between 3+1
states, while X corresponds to the first box amplitude,
and Y to the sum of the last two. Explicit expressions for
all three terms are given in Ref. 5. Because we are
mainly interested in I=O reactions, the three-nucleon
subamplitudes carry isospin 1 = —,

' and the (2) + (2)
subamplitudes only involve identical pairs. The four-
nucleon amplitudes are characterized by (k'S'Lj''~

i

x7„~(E)
i
kSLj~), where k is the relative momentum

between two-body clusters, u is a given separable term of
the three-nucleon subamplitude j~, and E is the four-
body center-of-mass energy. Denoting 7& as the 3+1

3+1 elastic amplitude, the corresponding integral
equation in operator form reads

V1 ='13+SDV'1, (2)

7 2
=A+SDT2, (3)

where A is the transfer Born term which, using Eqs.
(13) and (14) in Ref. 5, reads

where D is the three-nucleon propagator as defined by
the energy-dependent pole expansion of the (3)+ 1

subamplitude. Likewise, defining T2 as the 2+2 3+ 1

amplitude, one may write a similar integral equation

(k'S'Lj''
i A„(E) i qSL, v v') = [1+( —1) + +

IA, (E;k'q;S'Lj'';SLvv') 6„.
Finally, defining 73 as the 2+2 2+2 amplitude, one

tgets T3 from T2 through an integral relation ing theory, we write

(4)

T3 =AD%2. (5) 7.(1) 7 (0)+A(1)+7 (0)DA(1)+~(l)D~(0)

If in these formally exact equations one drops the trip-
let NN channel that carries angular momentum l=2,
one falls into the too approximation; that is, all s~j
three-nucleon channels in Table I disappear, leading to s
and l conservation. If, in addition, one neglects the cou-
pling between two negative-parity 3+1 states, one ob-
tains the equations shown in I. Apart from very small
numerical differences (of the order of one or two percent
in the phase shifts) the above-mentioned procedure is
identical to dropping all terms in % or A where 1=2,
s&j three-nucleon channels are involved, l ~0 or 1, and
two negative-parity 3+1 states are coupled. Therefore,
for simplicity, we take our amplitudes from I as our
zeroth-order amplitudes, and proceed to calculate first-
order corrections to the 2+2 3+1 and 2+2 2+2
amplitudes that result from the tensor components in the
kernel. Following the above-mentioned prescription we
can separate both A and % into

A(o)+A(1)

~ =~«)+~(»,
where A and S have l =0, s =j three-nucleon
channel components with l=0 or 1, and no terms that
couple two negative-parity 3+1 states. Using A and

) in Eqs. (2)-(4) we get 7'; ) which are, within a few
percent, numerically identical to those obtained in I.
Next, using standard identities in multichannel scatter-

+7 (0)D~ (1)D+(0)

and

~(i) ~(o)+A(i)D+(o)

+7 (0)DA (1)+g (0)D cg (1)Dc@(0) (9)

To simplify the calculation even further we consider
terms in A ') and % ' that involve the j~ =

2
+ and

2
+ three-nucleon states alone. Therefore A ' involves

terms with 1+1~ 2 and % ' requires 1+1')2 or
1+1'+1+1')2; A ' and % ' carry at least a vertex
with a nonzero angular momentum corresponding to an
1=2 NN form factor or a 1=2 N-(2N) generalized
three-nucleon form factor with quantum numbers j~
=

2
+ or —,

' + and channel spin s. Since d-wave form
factors are in general weaker than s-wave ones, we take
4 as the upper limit on the sum of all I's. In Ref. 5, we
showed that the binding energy is 99.9% converged when
a similar prescription is used on S. All half-shell and
off-shell matrix elements A ' and %(') are calculated
for complex momentum k using the same contour-
rotated integration mesh as in I. This procedure is valid
as long as one stays below the four-body breakup thresh-
old.

On a VAX 8550 computer, the calculation of all terms
needed in (8) and (9) to get 7 2') and 7 3'), with three-
nucleon tensor coupling effects resulting from the j~
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FIG. 2. Cross section for dd p H at 6- and 8-MeV deute-
ron laboratory energy. The data are from Ref. 6.

subamplitude alone, takes 51 h of CPU time.
Adding the j =

2 subamplitude requires 350 h. For
this reason we neglected the last term in (8) and (9)
when the coupling to the 2

+ state is included in A '

and M ' . In all calculations we take the negative- and
positive-parity four-nucleon amplitudes with J~ 4. The
results are shown in Figs. 2-4 for dd p H and Fig. 5

for dd dd. The point Coulomb phases were used to
multiply the nuclear amplitudes and the point Coulomb
amplitude added in the case of dd dd.

In Fig. 2 we show the cross section for dd p H at
both 6- and 8-MeV deuteron laboratory energy. The
solid line is the new result using Eq. (8) and three-
nucleon tensor contributions from j =

2 alone. The
dashed line corresponds to the results of I. The tensor
analyzing powers (TAP's) T2o and T2i are shown in

Figs. 3 and 4 for Ed =6 MeV. Although the agreement
with the data is not perfect, the calculated TAP's show
the correct qualitative behavior; also, a considerable im-
provement in the cross section takes place over the re-
sults of Ref. 1. Nevertheless, a note of care should be
added concerning this calculation. Since the T ampli-
tudes are diagonal in S and L, the coupling in first order
through the 2 three-nucleon tensor components alone+

leaves many positive-parity four-nucleon amplitudes un-
changed or changed by a few percent. When the
tensor components are added in Eq. (8) with four terms
alone, a stronger coupling emerges that changes the
TAP's, while keeping the cross section unchanged. Nev-
ertheless, such results are inconclusive for two reasons:
(i) The fifth term in (8) may equally well introduce im-
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FIG. 3. Tensor analyzing power T2p for dd p H at 6-
MeV deuteron laboratory energy. The data are from Ref. 8.
The solid line corresponds to including all five terms in (8)
while the dashed line only involves four terms and the dotted
line two. Only j = —,

' + tensor components were included in

andA '.
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FIG. 4. Same as Fig. 3 for T21.

portant changes; (ii) in the presence of strong coupling,
perturbation theory may no longer be justified, and one
may be required to perform an exact calculation, partic-
ularly for lower values of J (see I for the discussion of a
similar problem). Work is under way to investigate the
eA'ect of the 2

+ tensor coupling.
Finally, in Fig. 5 we show the dd dd TAP's at

Ed =6 MeV. Again we find a very remarkable qualita-
tive agreement, particularly for T2&, which, in this case,
improves by adding tensor coupling eAects through the

three-nucleon state. For the reasons mentioned
above, one should not take these changes very seriously,
but only as a possible indication of the trends one may
expect. Nevertheless, it is remarkable that one is able to
simultaneously describe TAP's for dd p H and dd
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that are quantitatively acceptable, though not perfect.
Compared with the most recent resonating-group-
method (RGM) calculation' for dd~ p H, our work
seems to provide a better description of the differential-
cross-section data particularly for e, ~ 30 . No
TAP's are displayed in Ref. 10 for the same reaction.

We also find that the results we now obtain for the
dd dd cross section hardly differ from those obtained
in I. Unless some major change takes place when one
adds the last term in Eq. (9) together with the
three-nucleon state, or eventually one performs an exact
calculation, this persistent discrepancy may have to be
related (o the nature of the chosen %%potential or to the
incorrect treatment of the Coulomb force. The RGM re-
sults for the dd dd differential cross section are, rela-
tive to the data, substantially better than ours, but unlike
ours, they include the correct treatment of the Coulomb
distortion.

We would like to thank R. C. Johnson for many useful
discussions as well as for his notes on how to calculate
tensor analyzing powers given the amplitudes. We
would also like to acknowledge the hospitality of the
University of Surrey where this work started.
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dd that are 1 order of magnitude different without
using any free parameter. Instead one uses the correct
four-body dynamics together with a simple %% force
that fits the low-energy nucleon-nucleon observables,
leads to a reasonable triton binding energy (e, = —8.57
MeV), and generates low-energy p-d scattering results

FIG, S. Analyzing powers for dd dd at 6-MeV deuteron
laboratory energy. The data are from Ref. 9. The solid curves
correspond to all four terms in (9) while the triple-dot-dashed
curves include the first three. Both curves only take j~= 2

+

tensor components. The double-dot-dashed curves take j~
2

+ and 2
+ tensor components but include only the first

three terms in (9).
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